// Copyright (c) 2009-2010 Satoshi Nakamoto // Distributed under the MIT/X11 software license, see the accompanying // file license.txt or http://www.opensource.org/licenses/mit-license.php. // // Why base-58 instead of standard base-64 encoding? // - Don't want 0OIl characters that look the same in some fonts and // could be used to create visually identical looking account numbers. // - A string with non-alphanumeric characters is not as easily accepted as an account number. // - E-mail usually won't line-break if there's no punctuation to break at. // - Doubleclicking selects the whole number as one word if it's all alphanumeric. // #ifndef BITCOIN_BASE58_H #define BITCOIN_BASE58_H #include #include #include "bignum.h" static const char* pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; inline std::string EncodeBase58(const unsigned char* pbegin, const unsigned char* pend) { CAutoBN_CTX pctx; CBigNum bn58 = 58; CBigNum bn0 = 0; // Convert big endian data to little endian // Extra zero at the end make sure bignum will interpret as a positive number std::vector vchTmp(pend-pbegin+1, 0); reverse_copy(pbegin, pend, vchTmp.begin()); // Convert little endian data to bignum CBigNum bn; bn.setvch(vchTmp); // Convert bignum to std::string std::string str; // Expected size increase from base58 conversion is approximately 137% // use 138% to be safe str.reserve((pend - pbegin) * 138 / 100 + 1); CBigNum dv; CBigNum rem; while (bn > bn0) { if (!BN_div(&dv, &rem, &bn, &bn58, pctx)) throw bignum_error("EncodeBase58 : BN_div failed"); bn = dv; unsigned int c = rem.getulong(); str += pszBase58[c]; } // Leading zeroes encoded as base58 zeros for (const unsigned char* p = pbegin; p < pend && *p == 0; p++) str += pszBase58[0]; // Convert little endian std::string to big endian reverse(str.begin(), str.end()); return str; } inline std::string EncodeBase58(const std::vector& vch) { return EncodeBase58(&vch[0], &vch[0] + vch.size()); } inline bool DecodeBase58(const char* psz, std::vector& vchRet) { CAutoBN_CTX pctx; vchRet.clear(); CBigNum bn58 = 58; CBigNum bn = 0; CBigNum bnChar; while (isspace(*psz)) psz++; // Convert big endian string to bignum for (const char* p = psz; *p; p++) { const char* p1 = strchr(pszBase58, *p); if (p1 == NULL) { while (isspace(*p)) p++; if (*p != '\0') return false; break; } bnChar.setulong(p1 - pszBase58); if (!BN_mul(&bn, &bn, &bn58, pctx)) throw bignum_error("DecodeBase58 : BN_mul failed"); bn += bnChar; } // Get bignum as little endian data std::vector vchTmp = bn.getvch(); // Trim off sign byte if present if (vchTmp.size() >= 2 && vchTmp.end()[-1] == 0 && vchTmp.end()[-2] >= 0x80) vchTmp.erase(vchTmp.end()-1); // Restore leading zeros int nLeadingZeros = 0; for (const char* p = psz; *p == pszBase58[0]; p++) nLeadingZeros++; vchRet.assign(nLeadingZeros + vchTmp.size(), 0); // Convert little endian data to big endian reverse_copy(vchTmp.begin(), vchTmp.end(), vchRet.end() - vchTmp.size()); return true; } inline bool DecodeBase58(const std::string& str, std::vector& vchRet) { return DecodeBase58(str.c_str(), vchRet); } inline std::string EncodeBase58Check(const std::vector& vchIn) { // add 4-byte hash check to the end std::vector vch(vchIn); uint256 hash = Hash(vch.begin(), vch.end()); vch.insert(vch.end(), (unsigned char*)&hash, (unsigned char*)&hash + 4); return EncodeBase58(vch); } inline bool DecodeBase58Check(const char* psz, std::vector& vchRet) { if (!DecodeBase58(psz, vchRet)) return false; if (vchRet.size() < 4) { vchRet.clear(); return false; } uint256 hash = Hash(vchRet.begin(), vchRet.end()-4); if (memcmp(&hash, &vchRet.end()[-4], 4) != 0) { vchRet.clear(); return false; } vchRet.resize(vchRet.size()-4); return true; } inline bool DecodeBase58Check(const std::string& str, std::vector& vchRet) { return DecodeBase58Check(str.c_str(), vchRet); } class CBitcoinAddress { protected: unsigned char nVersion; std::vector vchData; public: bool SetAddress(const uint160& hash160) { nVersion = fTestNet ? 111 : 0; vchData.resize(20); memcpy(&vchData[0], &hash160, 20); return true; } bool SetAddress(const char* pszAddress) { std::vector vchTemp; DecodeBase58Check(pszAddress, vchTemp); if (vchTemp.empty()) { vchData.clear(); nVersion = 0; return false; } nVersion = vchTemp[0]; vchData.resize(vchTemp.size() - 1); memcpy(&vchData[0], &vchTemp[1], vchData.size()); return true; } bool SetAddress(const std::string& strAddress) { return SetAddress(strAddress.c_str()); } bool SetAddress(const std::vector& vchPubKey) { return SetAddress(Hash160(vchPubKey)); } bool IsValid() const { int nExpectedSize = 20; bool fExpectTestNet = false; switch(nVersion) { case 0: break; case 111: fExpectTestNet = true; break; default: return false; } return fExpectTestNet == fTestNet && vchData.size() == nExpectedSize; } CBitcoinAddress() { nVersion = 0; vchData.clear(); } CBitcoinAddress(uint160 hash160In) { SetAddress(hash160In); } CBitcoinAddress(const std::vector& vchPubKey) { SetAddress(vchPubKey); } CBitcoinAddress(const std::string& strAddress) { SetAddress(strAddress); } CBitcoinAddress(const char* pszAddress) { SetAddress(pszAddress); } std::string ToString() const { std::vector vch(1, nVersion); vch.insert(vch.end(), vchData.begin(), vchData.end()); return EncodeBase58Check(vch); } uint160 GetHash160() const { assert(vchData.size() == 20); uint160 hash160; memcpy(&hash160, &vchData[0], 20); return hash160; } int CompareTo(const CBitcoinAddress& address) const { if (nVersion < address.nVersion) return -1; if (nVersion < address.nVersion) return 1; if (vchData < address.vchData) return -1; if (vchData > address.vchData) return 1; return 0; } bool operator==(const CBitcoinAddress& address) const { return CompareTo(address) == 0; } bool operator<=(const CBitcoinAddress& address) const { return CompareTo(address) <= 0; } bool operator>=(const CBitcoinAddress& address) const { return CompareTo(address) >= 0; } bool operator< (const CBitcoinAddress& address) const { return CompareTo(address) < 0; } bool operator> (const CBitcoinAddress& address) const { return CompareTo(address) > 0; } }; #endif