X-Git-Url: https://git.novaco.in/?a=blobdiff_plain;f=lib%2Fbitcoin.py;h=b068baaff0f89262acb76ddf6be872743d65bc61;hb=19553a056d7b78dd4ed2e6a9c8fbbf5f5dcf5062;hp=61d0bd0cb7bc6bad51c91dbb8ba9cfda0789c7a4;hpb=164c746f51732f04325913382445f24e1af2608d;p=electrum-nvc.git diff --git a/lib/bitcoin.py b/lib/bitcoin.py index 61d0bd0..b068baa 100644 --- a/lib/bitcoin.py +++ b/lib/bitcoin.py @@ -427,169 +427,29 @@ def CKD_prime(K, c, n): -class ElectrumSequence: - """ Privatekey(type,n) = Master_private_key + H(n|S|type) """ - - def __init__(self, mpk, mpk2 = None, mpk3 = None): - self.mpk = mpk - self.mpk2 = mpk2 - self.mpk3 = mpk3 +def bip32_private_derivation(k, c, branch, sequence): + assert sequence.startswith(branch) + sequence = sequence[len(branch):] + for n in sequence.split('/'): + if n == '': continue + n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) + k, c = CKD(k, c, n) + K, K_compressed = get_pubkeys_from_secret(k) + return k.encode('hex'), c.encode('hex'), K.encode('hex'), K_compressed.encode('hex') - @classmethod - def mpk_from_seed(klass, seed): - curve = SECP256k1 - secexp = klass.stretch_key(seed) - master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 ) - master_public_key = master_private_key.get_verifying_key().to_string().encode('hex') - return master_public_key - @classmethod - def stretch_key(self,seed): - oldseed = seed - for i in range(100000): - seed = hashlib.sha256(seed + oldseed).digest() - return string_to_number( seed ) - - def get_sequence(self, sequence, mpk): - for_change, n = sequence - return string_to_number( Hash( "%d:%d:"%(n,for_change) + mpk.decode('hex') ) ) - - def get_address(self, sequence): - if not self.mpk2: - pubkey = self.get_pubkey(sequence) - address = public_key_to_bc_address( pubkey.decode('hex') ) - elif not self.mpk3: - pubkey1 = self.get_pubkey(sequence) - pubkey2 = self.get_pubkey(sequence, mpk = self.mpk2) - address = Transaction.multisig_script([pubkey1, pubkey2], 2)["address"] - else: - pubkey1 = self.get_pubkey(sequence) - pubkey2 = self.get_pubkey(sequence, mpk = self.mpk2) - pubkey3 = self.get_pubkey(sequence, mpk = self.mpk3) - address = Transaction.multisig_script([pubkey1, pubkey2, pubkey3], 2)["address"] - return address - - def get_pubkey(self, sequence, mpk=None): - curve = SECP256k1 - if mpk is None: mpk = self.mpk - z = self.get_sequence(sequence, mpk) - master_public_key = ecdsa.VerifyingKey.from_string( mpk.decode('hex'), curve = SECP256k1 ) - pubkey_point = master_public_key.pubkey.point + z*curve.generator - public_key2 = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) - return '04' + public_key2.to_string().encode('hex') - - def get_private_key_from_stretched_exponent(self, sequence, secexp): - order = generator_secp256k1.order() - secexp = ( secexp + self.get_sequence(sequence, self.mpk) ) % order - pk = number_to_string( secexp, generator_secp256k1.order() ) - compressed = False - return SecretToASecret( pk, compressed ) - - def get_private_key(self, sequence, seed): - secexp = self.stretch_key(seed) - return self.get_private_key_from_stretched_exponent(sequence, secexp) - - def get_private_keys(self, sequence_list, seed): - secexp = self.stretch_key(seed) - return [ self.get_private_key_from_stretched_exponent( sequence, secexp) for sequence in sequence_list] - - def check_seed(self, seed): - curve = SECP256k1 - secexp = self.stretch_key(seed) - master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 ) - master_public_key = master_private_key.get_verifying_key().to_string().encode('hex') - if master_public_key != self.mpk: - print_error('invalid password (mpk)') - raise BaseException('Invalid password') - return True - - def get_input_info(self, sequence): - if not self.mpk2: - pk_addr = self.get_address(sequence) - redeemScript = None - elif not self.mpk3: - pubkey1 = self.get_pubkey(sequence) - pubkey2 = self.get_pubkey(sequence,mpk=self.mpk2) - pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key - redeemScript = Transaction.multisig_script([pubkey1, pubkey2], 2)['redeemScript'] - else: - pubkey1 = self.get_pubkey(sequence) - pubkey2 = self.get_pubkey(sequence, mpk=self.mpk2) - pubkey3 = self.get_pubkey(sequence, mpk=self.mpk3) - pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key - redeemScript = Transaction.multisig_script([pubkey1, pubkey2, pubkey3], 2)['redeemScript'] - return pk_addr, redeemScript +def bip32_public_derivation(c, K, branch, sequence): + assert sequence.startswith(branch) + sequence = sequence[len(branch):] + for n in sequence.split('/'): + n = int(n) + K, cK, c = CKD_prime(K, c, n) + return c.encode('hex'), K.encode('hex'), cK.encode('hex') -class BIP32Sequence: - def __init__(self, mpk, mpk2 = None, mpk3 = None): - self.mpk = mpk - self.mpk2 = mpk2 - self.mpk3 = mpk3 - - @classmethod - def mpk_from_seed(klass, seed): - master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) - return master_public_key.encode('hex'), master_chain.encode('hex') - - def get_pubkey(self, sequence, mpk = None): - if not mpk: mpk = self.mpk - master_public_key, master_chain = mpk - K = master_public_key.decode('hex') - chain = master_chain.decode('hex') - for i in sequence: - K, K_compressed, chain = CKD_prime(K, chain, i) - return K_compressed.encode('hex') - - def get_address(self, sequence): - if not self.mpk2: - pubkey = self.get_pubkey(sequence) - address = public_key_to_bc_address( pubkey.decode('hex') ) - elif not self.mpk3: - pubkey1 = self.get_pubkey(sequence) - pubkey2 = self.get_pubkey(sequence, mpk = self.mpk2) - address = Transaction.multisig_script([pubkey1, pubkey2], 2)["address"] - else: - pubkey1 = self.get_pubkey(sequence) - pubkey2 = self.get_pubkey(sequence, mpk = self.mpk2) - pubkey3 = self.get_pubkey(sequence, mpk = self.mpk3) - address = Transaction.multisig_script([pubkey1, pubkey2, pubkey3], 2)["address"] - return address - - def get_private_key(self, sequence, seed): - master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) - chain = master_chain - k = master_secret - for i in sequence: - k, chain = CKD(k, chain, i) - return SecretToASecret(k, True) - - def get_private_keys(self, sequence_list, seed): - return [ self.get_private_key( sequence, seed) for sequence in sequence_list] - - def check_seed(self, seed): - master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed) - assert self.mpk == (master_public_key.encode('hex'), master_chain.encode('hex')) - - def get_input_info(self, sequence): - if not self.mpk2: - pk_addr = self.get_address(sequence) - redeemScript = None - elif not self.mpk3: - pubkey1 = self.get_pubkey(sequence) - pubkey2 = self.get_pubkey(sequence, mpk=self.mpk2) - pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key - redeemScript = Transaction.multisig_script([pubkey1, pubkey2], 2)['redeemScript'] - else: - pubkey1 = self.get_pubkey(sequence) - pubkey2 = self.get_pubkey(sequence, mpk=self.mpk2) - pubkey3 = self.get_pubkey(sequence, mpk=self.mpk3) - pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key - redeemScript = Transaction.multisig_script([pubkey1, pubkey2, pubkey3], 2)['redeemScript'] - return pk_addr, redeemScript ################################## transactions @@ -734,9 +594,10 @@ class Transaction: txin = self.inputs[i] tx_for_sig = self.serialize( self.inputs, self.outputs, for_sig = i ) - if txin.get('redeemScript'): + redeem_script = txin.get('redeemScript') + if redeem_script: # 1 parse the redeem script - num, redeem_pubkeys = deserialize.parse_redeemScript(txin.get('redeemScript')) + num, redeem_pubkeys = deserialize.parse_redeemScript(redeem_script) self.inputs[i]["pubkeys"] = redeem_pubkeys # build list of public/private keys @@ -747,19 +608,25 @@ class Transaction: pubkey = GetPubKey(pkey.pubkey, compressed) keypairs[ pubkey.encode('hex') ] = sec + print "keypairs", keypairs + print redeem_script, redeem_pubkeys + # list of already existing signatures signatures = txin.get("signatures",[]) print_error("signatures",signatures) for pubkey in redeem_pubkeys: - public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1) - for s in signatures: - try: - public_key.verify_digest( s.decode('hex')[:-1], Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) - break - except ecdsa.keys.BadSignatureError: - continue - else: + + # here we have compressed key.. it won't work + #public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1) + #for s in signatures: + # try: + # public_key.verify_digest( s.decode('hex')[:-1], Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der) + # break + # except ecdsa.keys.BadSignatureError: + # continue + #else: + if 1: # check if we have a key corresponding to the redeem script if pubkey in keypairs.keys(): # add signature @@ -783,7 +650,6 @@ class Transaction: compressed = is_compressed(sec) pkey = regenerate_key(sec) secexp = pkey.secret - private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 ) public_key = private_key.get_verifying_key() pkey = EC_KEY(secexp)