X-Git-Url: https://git.novaco.in/?a=blobdiff_plain;f=src%2Fkey.h;h=8dd8f16d49496c5cd693b856b91fc5cf7bfa37b7;hb=ef17ac0211ddd486127e1f94756fbb3fd704a9b4;hp=2d8e61850f1d77e041e36c8b2e26bc1980f0dd0f;hpb=ab0e30c40cc589661ceb4f0d09c9373ecaefc3a9;p=novacoin.git diff --git a/src/key.h b/src/key.h index 2d8e618..8dd8f16 100644 --- a/src/key.h +++ b/src/key.h @@ -13,9 +13,9 @@ #include "uint256.h" #include "hash.h" #include "bignum.h" -#include "ies.h" #include // for EC_KEY definition +#include // secp160k1 // const unsigned int PRIVATE_KEY_SIZE = 192; @@ -62,47 +62,151 @@ public: CScriptID(const uint160 &in) : uint160(in) { } }; -/** An encapsulated public key. */ -class CPubKey { +/** An encapsulated OpenSSL Elliptic Curve key (public) */ +class CPubKey +{ private: - std::vector vchPubKey; - friend class CKey; + + /** + * Just store the serialized data. + * Its length can very cheaply be computed from the first byte. + */ + unsigned char vbytes[65]; + + //! Compute the length of a pubkey with a given first byte. + unsigned int static GetLen(unsigned char chHeader) + { + if (chHeader == 2 || chHeader == 3) + return 33; + if (chHeader == 4 || chHeader == 6 || chHeader == 7) + return 65; + return 0; + } + + // Set this key data to be invalid + void Invalidate() + { + vbytes[0] = 0xFF; + } public: - CPubKey() { } - CPubKey(const std::vector &vchPubKeyIn) : vchPubKey(vchPubKeyIn) { } - friend bool operator==(const CPubKey &a, const CPubKey &b) { return a.vchPubKey == b.vchPubKey; } - friend bool operator!=(const CPubKey &a, const CPubKey &b) { return a.vchPubKey != b.vchPubKey; } - friend bool operator<(const CPubKey &a, const CPubKey &b) { return a.vchPubKey < b.vchPubKey; } + // Construct an invalid public key. + CPubKey() + { + Invalidate(); + } - IMPLEMENT_SERIALIZE( - READWRITE(vchPubKey); - ) + // Initialize a public key using begin/end iterators to byte data. + template + void Set(const T pbegin, const T pend) + { + int len = pend == pbegin ? 0 : GetLen(pbegin[0]); + if (len && len == (pend - pbegin)) + memcpy(vbytes, (unsigned char*)&pbegin[0], len); + else + Invalidate(); + } - CKeyID GetID() const { - return CKeyID(Hash160(vchPubKey)); + void Set(const std::vector& vch) + { + Set(vch.begin(), vch.end()); } - uint256 GetHash() const { - return Hash(vchPubKey.begin(), vchPubKey.end()); + template + CPubKey(const T pbegin, const T pend) + { + Set(pbegin, pend); } - bool IsValid() const { - return vchPubKey.size() == 33 || vchPubKey.size() == 65; + CPubKey(const std::vector& vch) + { + Set(vch.begin(), vch.end()); } - bool IsCompressed() const { - return vchPubKey.size() == 33; + // Read-only vector-like interface to the data. + unsigned int size() const { return GetLen(vbytes[0]); } + const unsigned char* begin() const { return vbytes; } + const unsigned char* end() const { return vbytes + size(); } + const unsigned char& operator[](unsigned int pos) const { return vbytes[pos]; } + + friend bool operator==(const CPubKey& a, const CPubKey& b) { return a.vbytes[0] == b.vbytes[0] && memcmp(a.vbytes, b.vbytes, a.size()) == 0; } + friend bool operator!=(const CPubKey& a, const CPubKey& b) { return !(a == b); } + friend bool operator<(const CPubKey& a, const CPubKey& b) { return a.vbytes[0] < b.vbytes[0] || (a.vbytes[0] == b.vbytes[0] && memcmp(a.vbytes, b.vbytes, a.size()) < 0); } + + //! Implement serialization, as if this was a byte vector. + unsigned int GetSerializeSize(int nType, int nVersion) const + { + return size() + 1; + } + template + void Serialize(Stream& s, int nType, int nVersion) const + { + unsigned int len = size(); + ::WriteCompactSize(s, len); + s.write((char*)vbytes, len); + } + template + void Unserialize(Stream& s, int nType, int nVersion) + { + unsigned int len = ::ReadCompactSize(s); + if (len <= 65) { + s.read((char*)vbytes, len); + } else { + // invalid pubkey, skip available data + char dummy; + while (len--) + s.read(&dummy, 1); + Invalidate(); + } } - std::vector Raw() const { - return vchPubKey; + CKeyID GetID() const + { + return CKeyID(Hash160(vbytes, vbytes + size())); } - // Encrypt data - void EncryptData(const std::vector& data, std::vector& encrypted); -}; + uint256 GetHash() const + { + return Hash(vbytes, vbytes + size()); + } + + /* + * Check syntactic correctness. + * + * Note that this is consensus critical as CheckSig() calls it! + */ + bool IsValid() const + { + return size() > 0; + } + + //! fully validate whether this is a valid public key (more expensive than IsValid()) + bool IsFullyValid() const + { + const unsigned char* pbegin = &vbytes[0]; + EC_KEY *pkey = EC_KEY_new_by_curve_name(NID_secp256k1); + if (o2i_ECPublicKey(&pkey, &pbegin, size())) + { + EC_KEY_free(pkey); + return true; + } + return false; + } + + //! Check whether this is a compressed public key. + bool IsCompressed() const + { + return size() == 33; + } + + bool Verify(const uint256& hash, const std::vector& vchSig) const; + bool VerifyCompact(uint256 hash, const std::vector& vchSig); + + bool SetCompactSignature(uint256 hash, const std::vector& vchSig); + // Reserialize to DER + static bool ReserealizeSignature(std::vector& vchSig); +}; // secure_allocator is defined in allocators.h // CPrivKey is a serialized private key, with all parameters included (279 bytes) @@ -110,15 +214,12 @@ typedef std::vector > CPrivKey; // CSecret is a serialization of just the secret parameter (32 bytes) typedef std::vector > CSecret; -/** An encapsulated OpenSSL Elliptic Curve key (public and/or private) */ +/** An encapsulated OpenSSL Elliptic Curve key (private) */ class CKey { protected: EC_KEY* pkey; bool fSet; - bool fCompressedPubKey; - - void SetCompressedPubKey(); public: @@ -135,13 +236,13 @@ public: bool IsNull() const; bool IsCompressed() const; + void SetCompressedPubKey(bool fCompressed=true); void MakeNewKey(bool fCompressed=true); bool SetPrivKey(const CPrivKey& vchPrivKey); bool SetSecret(const CSecret& vchSecret, bool fCompressed = true); CSecret GetSecret(bool &fCompressed) const; CSecret GetSecret() const; CPrivKey GetPrivKey() const; - bool SetPubKey(const CPubKey& vchPubKey); CPubKey GetPubKey() const; bool Sign(uint256 hash, std::vector& vchSig); @@ -152,30 +253,10 @@ public: // 0x1D = second key with even y, 0x1E = second key with odd y bool SignCompact(uint256 hash, std::vector& vchSig); - // reconstruct public key from a compact signature - // This is only slightly more CPU intensive than just verifying it. - // If this function succeeds, the recovered public key is guaranteed to be valid - // (the signature is a valid signature of the given data for that key) - bool SetCompactSignature(uint256 hash, const std::vector& vchSig); - - bool Verify(uint256 hash, const std::vector& vchSig); - - // Verify a compact signature - bool VerifyCompact(uint256 hash, const std::vector& vchSig); - bool IsValid(); // Check whether an element of a signature (r or s) is valid. static bool CheckSignatureElement(const unsigned char *vch, int len, bool half); - - // Reserialize to DER - static bool ReserealizeSignature(std::vector& vchSig); - - // Encrypt data - void EncryptData(const std::vector& data, std::vector& encrypted); - - // Decrypt data - void DecryptData(const std::vector& encrypted, std::vector& data); }; class CPoint