basic functions and tests for multisig transactions and bip 32
authorthomasv <thomasv@gitorious>
Wed, 30 Jan 2013 19:13:31 +0000 (20:13 +0100)
committerthomasv <thomasv@gitorious>
Wed, 30 Jan 2013 19:13:31 +0000 (20:13 +0100)
lib/bitcoin.py
lib/wallet.py

index eb20500..d666c2f 100644 (file)
@@ -29,6 +29,7 @@ def int_to_hex(i, length=1):
     return rev_hex(s)
 
 def var_int(i):
+    # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
     if i<0xfd:
         return int_to_hex(i)
     elif i<=0xffff:
@@ -69,22 +70,22 @@ def i2d_ECPrivateKey(pkey, compressed=False):
               '%064x' % _r + \
               '020101a144034200'
         
-    return key.decode('hex') + i2o_ECPublicKey(pkey, compressed)
+    return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
     
-def i2o_ECPublicKey(pkey, compressed=False):
+def i2o_ECPublicKey(pubkey, compressed=False):
     # public keys are 65 bytes long (520 bits)
     # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
     # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
     # compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
     if compressed:
-        if pkey.pubkey.point.y() & 1:
-            key = '03' + '%064x' % pkey.pubkey.point.x()
+        if pubkey.point.y() & 1:
+            key = '03' + '%064x' % pubkey.point.x()
         else:
-            key = '02' + '%064x' % pkey.pubkey.point.x()
+            key = '02' + '%064x' % pubkey.point.x()
     else:
         key = '04' + \
-              '%064x' % pkey.pubkey.point.x() + \
-              '%064x' % pkey.pubkey.point.y()
+              '%064x' % pubkey.point.x() + \
+              '%064x' % pubkey.point.y()
             
     return key.decode('hex')
             
@@ -93,8 +94,6 @@ def i2o_ECPublicKey(pkey, compressed=False):
                                                 
             
 ############ functions from pywallet ##################### 
-            
-addrtype = 0
 
 def hash_160(public_key):
     try:
@@ -111,7 +110,7 @@ def public_key_to_bc_address(public_key):
     h160 = hash_160(public_key)
     return hash_160_to_bc_address(h160)
 
-def hash_160_to_bc_address(h160):
+def hash_160_to_bc_address(h160, addrtype = 0):
     vh160 = chr(addrtype) + h160
     h = Hash(vh160)
     addr = vh160 + h[0:4]
@@ -119,7 +118,7 @@ def hash_160_to_bc_address(h160):
 
 def bc_address_to_hash_160(addr):
     bytes = b58decode(addr, 25)
-    return bytes[1:21]
+    return ord(bytes[0]), bytes[1:21]
 
 def encode_point(pubkey, compressed=False):
     order = generator_secp256k1.order()
@@ -200,12 +199,12 @@ def DecodeBase58Check(psz):
 def PrivKeyToSecret(privkey):
     return privkey[9:9+32]
 
-def SecretToASecret(secret, compressed=False):
+def SecretToASecret(secret, compressed=False, addrtype=0):
     vchIn = chr((addrtype+128)&255) + secret
     if compressed: vchIn += '\01'
     return EncodeBase58Check(vchIn)
 
-def ASecretToSecret(key):
+def ASecretToSecret(key, addrtype=0):
     vch = DecodeBase58Check(key)
     if vch and vch[0] == chr((addrtype+128)&255):
         return vch[1:]
@@ -220,8 +219,8 @@ def regenerate_key(sec):
     secret = int('0x' + b.encode('hex'), 16)
     return EC_KEY(secret)
 
-def GetPubKey(pkey, compressed=False):
-    return i2o_ECPublicKey(pkey, compressed)
+def GetPubKey(pubkey, compressed=False):
+    return i2o_ECPublicKey(pubkey, compressed)
 
 def GetPrivKey(pkey, compressed=False):
     return i2d_ECPrivateKey(pkey, compressed)
@@ -252,48 +251,233 @@ class EC_KEY(object):
         self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
         self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
         self.secret = secret
+
+
+###################################### BIP32 ##############################
+
+def bip32_init(seed):
+    import hmac
         
+    I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
+
+    print "seed", seed.encode('hex')
+    master_secret = I[0:32]
+    master_chain = I[32:]
+
+    # public key
+    curve = SECP256k1
+    master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 )
+    master_public_key = master_private_key.get_verifying_key()
+    K = master_public_key.to_string()
+    K_compressed = GetPubKey(master_public_key.pubkey,True)
+    return master_secret, master_chain, K, K_compressed
+
+    
+def CKD(k, c, n):
+    import hmac
+    from ecdsa.util import string_to_number, number_to_string
+    order = generator_secp256k1.order()
+    keypair = EC_KEY(string_to_number(k))
+    K = GetPubKey(keypair.pubkey,True)
+    I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
+    k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order )
+    c_n = I[32:]
+    return k_n, c_n
+
+
+def CKD_prime(K, c, n):
+    import hmac
+    from ecdsa.util import string_to_number, number_to_string
+    order = generator_secp256k1.order()
 
+    K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
+    K_compressed = GetPubKey(K_public_key.pubkey,True)
 
-def filter(s): 
+    I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
+
+    #pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point )
+    public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 )
+    K_n = public_key.to_string()
+    K_n_compressed = GetPubKey(public_key.pubkey,True)
+    c_n = I[32:]
+
+    return K_n, K_n_compressed, c_n
+
+
+
+
+
+################################## transactions
+
+
+def tx_filter(s): 
     out = re.sub('( [^\n]*|)\n','',s)
     out = out.replace(' ','')
     out = out.replace('\n','')
     return out
 
-# https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
 def raw_tx( inputs, outputs, for_sig = None ):
-    s  = int_to_hex(1,4)                                     +   '     version\n' 
-    s += var_int( len(inputs) )                              +   '     number of inputs\n'
+    s  = int_to_hex(1,4)                                         # version
+    s += var_int( len(inputs) )                                  # number of inputs
     for i in range(len(inputs)):
-        _, _, p_hash, p_index, p_script, pubkey, sig = inputs[i]
-        s += p_hash.decode('hex')[::-1].encode('hex')        +  '     prev hash\n'
-        s += int_to_hex(p_index,4)                           +  '     prev index\n'
+        _, _, p_hash, p_index, p_script, pubkeysig = inputs[i]
+        s += p_hash.decode('hex')[::-1].encode('hex')            # prev hash
+        s += int_to_hex(p_index,4)                               # prev index
+
         if for_sig is None:
-            sig = sig + chr(1)                               # hashtype
-            script  = int_to_hex( len(sig))                  +  '     push %d bytes\n'%len(sig)
-            script += sig.encode('hex')                      +  '     sig\n'
-            script += int_to_hex( len(pubkey))               +  '     push %d bytes\n'%len(pubkey)
-            script += pubkey.encode('hex')                   +  '     pubkey\n'
+            if len(pubkeysig) == 1:
+                pubkey, sig = pubkeysig[0]
+                sig = sig + chr(1)                               # hashtype
+                script  = int_to_hex( len(sig))
+                script += sig.encode('hex')
+                script += int_to_hex( len(pubkey))
+                script += pubkey.encode('hex')
+            else:
+                pubkey0, sig0 = pubkeysig[0]
+                pubkey1, sig1 = pubkeysig[1]
+                sig0 = sig0 + chr(1)
+                sig1 = sig1 + chr(1)
+                inner_script = multisig_script([pubkey0, pubkey1])
+                script = '00'                                    # op_0
+                script += int_to_hex(len(sig0))
+                script += sig0.encode('hex')
+                script += int_to_hex(len(sig1))
+                script += sig1.encode('hex')
+                script += var_int(len(inner_script)/2)
+                script += inner_script
+
         elif for_sig==i:
-            script = p_script                                +  '     scriptsig \n'
+            if len(pubkeysig) > 1:
+                script = multisig_script(pubkeysig)              # p2sh uses the inner script
+            else:
+                script = p_script                                # scriptsig
         else:
             script=''
-        s += var_int( len(filter(script))/2 )                +  '     script length \n'
+        s += var_int( len(tx_filter(script))/2 )                 # script length
         s += script
-        s += "ffffffff"                                      +  '     sequence\n'
-    s += var_int( len(outputs) )                             +  '     number of outputs\n'
+        s += "ffffffff"                                          # sequence
+
+    s += var_int( len(outputs) )                                 # number of outputs
     for output in outputs:
         addr, amount = output
-        s += int_to_hex( amount, 8)                          +  '     amount: %d\n'%amount 
-        script = '76a9'                                      # op_dup, op_hash_160
-        script += '14'                                       # push 0x14 bytes
-        script += bc_address_to_hash_160(addr).encode('hex')
-        script += '88ac'                                     # op_equalverify, op_checksig
-        s += var_int( len(filter(script))/2 )                +  '     script length \n'
-        s += script                                          +  '     script \n'
-    s += int_to_hex(0,4)                                     # lock time
-    if for_sig is not None: s += int_to_hex(1, 4)            # hash type
+        s += int_to_hex( amount, 8)                              # amount
+        addrtype, hash_160 = bc_address_to_hash_160(addr)
+        if addrtype == 0:
+            script = '76a9'                                      # op_dup, op_hash_160
+            script += '14'                                       # push 0x14 bytes
+            script += hash_160.encode('hex')
+            script += '88ac'                                     # op_equalverify, op_checksig
+        elif addrtype == 5:
+            script = 'a9'                                        # op_hash_160
+            script += '14'                                       # push 0x14 bytes
+            script += hash_160.encode('hex')
+            script += '87'                                       # op_equal
+        else:
+            raise
+            
+        s += var_int( len(tx_filter(script))/2 )                #  script length
+        s += script                                             #  script
+    s += int_to_hex(0,4)                                        #  lock time
+    if for_sig is not None: s += int_to_hex(1, 4)               #  hash type
+    return tx_filter(s)
+
+
+def multisig_script(public_keys):
+    # supports only "2 of 2", and "2 of 3" transactions
+    n = len(public_keys)
+    s = '52'
+    for k in public_keys:
+        s += var_int(len(k)/2)
+        s += k
+    if n==2:
+        s += '52'
+    elif n==3:
+        s += '53'
+    else:
+        raise
+    s += 'ae'
     return s
 
 
+
+def test_bip32():
+    seed = "ff000000000000000000000000000000".decode('hex')
+    master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
+        
+    print "secret key", master_secret.encode('hex')
+    print "chain code", master_chain.encode('hex')
+
+    key_id = hash_160(master_public_key_compressed)
+    print "keyid", key_id.encode('hex')
+    print "base58"
+    print "address", hash_160_to_bc_address(key_id)
+    print "secret key", SecretToASecret(master_secret, True)
+
+    print "-- m/0 --"
+    k0, c0 = CKD(master_secret, master_chain, 0)
+    print "secret", k0.encode('hex')
+    print "chain", c0.encode('hex')
+    print "secret key", SecretToASecret(k0, True)
+    
+    K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0)
+    print "address", hash_160_to_bc_address(hash_160(K0_compressed))
+    
+    print "-- m/0/1 --"
+    K01, K01_compressed, c01 = CKD_prime(K0, c0, 1)
+    print "address", hash_160_to_bc_address(hash_160(K01_compressed))
+    
+    print "-- m/0/1/3 --"
+    K013, K013_compressed, c013 = CKD_prime(K01, c01, 3)
+    print "address", hash_160_to_bc_address(hash_160(K013_compressed))
+    
+    print "-- m/0/1/3/7 --"
+    K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7)
+    print "address", hash_160_to_bc_address(hash_160(K0137_compressed))
+        
+
+def test_p2sh():
+
+    print "2 of 2"
+    pubkeys = ["04e89a79651522201d756f14b1874ae49139cc984e5782afeca30ffe84e5e6b2cfadcfe9875c490c8a1a05a4debd715dd57471af8886ab5dfbb3959d97f087f77a",
+               "0455cf4a3ab68a011b18cb0a86aae2b8e9cad6c6355476de05247c57a9632d127084ac7630ad89893b43c486c5a9f7ec6158fb0feb708fa9255d5c4d44bc0858f8"]
+    s = multisig_script(pubkeys)
+    print "address", hash_160_to_bc_address(hash_160(s.decode('hex')), 5)
+
+
+    print "Gavin's tutorial: redeem p2sh:  http://blockchain.info/tx-index/30888901"
+    pubkey1 = "0491bba2510912a5bd37da1fb5b1673010e43d2c6d812c514e91bfa9f2eb129e1c183329db55bd868e209aac2fbc02cb33d98fe74bf23f0c235d6126b1d8334f86"
+    pubkey2 = "04865c40293a680cb9c020e7b1e106d8c1916d3cef99aa431a56d253e69256dac09ef122b1a986818a7cb624532f062c1d1f8722084861c5c3291ccffef4ec6874"
+    pubkey3 = "048d2455d2403e08708fc1f556002f1b6cd83f992d085097f9974ab08a28838f07896fbab08f39495e15fa6fad6edbfb1e754e35fa1c7844c41f322a1863d46213"
+    pubkeys = [pubkey1, pubkey2, pubkey3]
+
+    tx_for_sig = raw_tx( [(None, None, '3c9018e8d5615c306d72397f8f5eef44308c98fb576a88e030c25456b4f3a7ac', 0, 'a914f815b036d9bbbce5e9f2a00abd1bf3dc91e9551087', pubkeys)],
+                         [('1GtpSrGhRGY5kkrNz4RykoqRQoJuG2L6DS',1000000)], for_sig = 0)
+
+    print "tx for sig", tx_for_sig
+
+    signature1 = "304502200187af928e9d155c4b1ac9c1c9118153239aba76774f775d7c1f9c3e106ff33c0221008822b0f658edec22274d0b6ae9de10ebf2da06b1bbdaaba4e50eb078f39e3d78"
+    signature2 = "30440220795f0f4f5941a77ae032ecb9e33753788d7eb5cb0c78d805575d6b00a1d9bfed02203e1f4ad9332d1416ae01e27038e945bc9db59c732728a383a6f1ed2fb99da7a4"
+
+    for pubkey in pubkeys:
+        import traceback, sys
+
+        public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1)
+
+        try:
+            public_key.verify_digest( signature1.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
+            print True
+        except ecdsa.keys.BadSignatureError:
+            #traceback.print_exc(file=sys.stdout)
+            print False
+
+        try:
+            public_key.verify_digest( signature2.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
+            print True
+        except ecdsa.keys.BadSignatureError:
+            #traceback.print_exc(file=sys.stdout)
+            print False
+
+if __name__ == '__main__':
+    #test_bip32()
+    test_p2sh()
+
index 97f0d3b..aff587e 100644 (file)
@@ -130,7 +130,7 @@ class Wallet:
         
         # rebuild private and public key from regenerated secret
         private_key = GetPrivKey(pkey, compressed)
-        public_key = GetPubKey(pkey, compressed)
+        public_key = GetPubKey(pkey.pubkey, compressed)
         address = public_key_to_bc_address(public_key)
         
         if address in self.all_addresses():
@@ -168,10 +168,10 @@ class Wallet:
         ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
         if not ADDRESS_RE.match(addr): return False
         try:
-            h = bc_address_to_hash_160(addr)
+            addrtype, h = bc_address_to_hash_160(addr)
         except:
             return False
-        return addr == hash_160_to_bc_address(h)
+        return addr == hash_160_to_bc_address(h, addrtype)
 
     def stretch_key(self,seed):
         oldseed = seed
@@ -216,7 +216,7 @@ class Wallet:
             compressed = False
             pkey = EC_KEY(secexp)
 
-        public_key = GetPubKey(pkey, compressed)
+        public_key = GetPubKey(pkey.pubkey, compressed)
         addr = public_key_to_bc_address(public_key)
         if addr != address:
             print_error('Invalid password with correct decoding')
@@ -606,7 +606,7 @@ class Wallet:
             addr = item.get('address')
             v = item.get('value')
             total += v
-            inputs.append((addr, v, item['tx_hash'], item['index'], item['raw_output_script'], None, None) )
+            inputs.append((addr, v, item['tx_hash'], item['index'], item['raw_output_script'], [(None,None)] ))
             fee = self.fee*len(inputs) if fixed_fee is None else fixed_fee
             if total >= amount + fee: break
         else:
@@ -628,18 +628,18 @@ class Wallet:
     def sign_inputs( self, inputs, outputs, password ):
         s_inputs = []
         for i in range(len(inputs)):
-            addr, v, p_hash, p_pos, p_scriptPubKey, _, _ = inputs[i]
+            addr, v, p_hash, p_pos, p_scriptPubKey, _ = inputs[i]
             secexp, compressed = self.get_private_key(addr, password)
             private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
             public_key = private_key.get_verifying_key()
 
             pkey = EC_KEY(secexp)
-            pubkey = GetPubKey(pkey, compressed)
+            pubkey = GetPubKey(pkey.pubkey, compressed)
 
-            tx = filter( raw_tx( inputs, outputs, for_sig = i ) )
+            tx = raw_tx( inputs, outputs, for_sig = i )
             sig = private_key.sign_digest( Hash( tx.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
             assert public_key.verify_digest( sig, Hash( tx.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
-            s_inputs.append( (addr, v, p_hash, p_pos, p_scriptPubKey, pubkey, sig) )
+            s_inputs.append( (addr, v, p_hash, p_pos, p_scriptPubKey, [(pubkey, sig)] ) )
         return s_inputs
 
     def pw_encode(self, s, password):
@@ -841,7 +841,7 @@ class Wallet:
 
     def signed_tx(self, inputs, outputs, password):
         s_inputs = self.sign_inputs( inputs, outputs, password )
-        tx = filter( raw_tx( s_inputs, outputs ) )
+        tx = raw_tx( s_inputs, outputs )
         return tx
 
     def sendtx(self, tx):