// Copyright (c) 2012 Pieter Wuille // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef _BITCOIN_ADDRMAN #define _BITCOIN_ADDRMAN 1 #include "netbase.h" #include "protocol.h" #include "util.h" #include "sync.h" #include #include #include /** Extended statistics about a CAddress */ class CAddrInfo : public CAddress { private: // where knowledge about this address first came from CNetAddr source; // last successful connection by us int64_t nLastSuccess; // last try whatsoever by us: // int64_t CAddress::nLastTry // connection attempts since last successful attempt int nAttempts; // reference count in new sets (memory only) int nRefCount; // in tried set? (memory only) bool fInTried; // position in vRandom int nRandomPos; friend class CAddrMan; public: IMPLEMENT_SERIALIZE( CAddress* pthis = (CAddress*)(this); READWRITE(*pthis); READWRITE(source); READWRITE(nLastSuccess); READWRITE(nAttempts); ) void Init() { nLastSuccess = 0; nLastTry = 0; nAttempts = 0; nRefCount = 0; fInTried = false; nRandomPos = -1; } CAddrInfo(const CAddress &addrIn, const CNetAddr &addrSource) : CAddress(addrIn), source(addrSource) { Init(); } CAddrInfo() : CAddress(), source() { Init(); } // Calculate in which "tried" bucket this entry belongs int GetTriedBucket(const std::vector &nKey) const; // Calculate in which "new" bucket this entry belongs, given a certain source int GetNewBucket(const std::vector &nKey, const CNetAddr& src) const; // Calculate in which "new" bucket this entry belongs, using its default source int GetNewBucket(const std::vector &nKey) const { return GetNewBucket(nKey, source); } // Determine whether the statistics about this entry are bad enough so that it can just be deleted bool IsTerrible(int64_t nNow = GetAdjustedTime()) const; // Calculate the relative chance this entry should be given when selecting nodes to connect to double GetChance(int64_t nNow = GetAdjustedTime()) const; }; // Stochastic address manager // // Design goals: // * Only keep a limited number of addresses around, so that addr.dat and memory requirements do not grow without bound. // * Keep the address tables in-memory, and asynchronously dump the entire to able in addr.dat. // * Make sure no (localized) attacker can fill the entire table with his nodes/addresses. // // To that end: // * Addresses are organized into buckets. // * Address that have not yet been tried go into 256 "new" buckets. // * Based on the address range (/16 for IPv4) of source of the information, 32 buckets are selected at random // * The actual bucket is chosen from one of these, based on the range the address itself is located. // * One single address can occur in up to 4 different buckets, to increase selection chances for addresses that // are seen frequently. The chance for increasing this multiplicity decreases exponentially. // * When adding a new address to a full bucket, a randomly chosen entry (with a bias favoring less recently seen // ones) is removed from it first. // * Addresses of nodes that are known to be accessible go into 64 "tried" buckets. // * Each address range selects at random 4 of these buckets. // * The actual bucket is chosen from one of these, based on the full address. // * When adding a new good address to a full bucket, a randomly chosen entry (with a bias favoring less recently // tried ones) is evicted from it, back to the "new" buckets. // * Bucket selection is based on cryptographic hashing, using a randomly-generated 256-bit key, which should not // be observable by adversaries. // * Several indexes are kept for high performance. Defining DEBUG_ADDRMAN will introduce frequent (and expensive) // consistency checks for the entire data structure. // total number of buckets for tried addresses #define ADDRMAN_TRIED_BUCKET_COUNT 64 // maximum allowed number of entries in buckets for tried addresses #define ADDRMAN_TRIED_BUCKET_SIZE 64 // total number of buckets for new addresses #define ADDRMAN_NEW_BUCKET_COUNT 256 // maximum allowed number of entries in buckets for new addresses #define ADDRMAN_NEW_BUCKET_SIZE 64 // over how many buckets entries with tried addresses from a single group (/16 for IPv4) are spread #define ADDRMAN_TRIED_BUCKETS_PER_GROUP 4 // over how many buckets entries with new addresses originating from a single group are spread #define ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP 32 // in how many buckets for entries with new addresses a single address may occur #define ADDRMAN_NEW_BUCKETS_PER_ADDRESS 4 // how many entries in a bucket with tried addresses are inspected, when selecting one to replace #define ADDRMAN_TRIED_ENTRIES_INSPECT_ON_EVICT 4 // how old addresses can maximally be #define ADDRMAN_HORIZON_DAYS 30 // after how many failed attempts we give up on a new node #define ADDRMAN_RETRIES 3 // how many successive failures are allowed ... #define ADDRMAN_MAX_FAILURES 10 // ... in at least this many days #define ADDRMAN_MIN_FAIL_DAYS 7 // the maximum percentage of nodes to return in a getaddr call #define ADDRMAN_GETADDR_MAX_PCT 23 // the maximum number of nodes to return in a getaddr call #define ADDRMAN_GETADDR_MAX 2500 /** Stochastical (IP) address manager */ class CAddrMan { private: // critical section to protect the inner data structures mutable CCriticalSection cs; // secret key to randomize bucket select with std::vector nKey; // last used nId int nIdCount; // table with information about all nIds std::map mapInfo; // find an nId based on its network address std::map mapAddr; // randomly-ordered vector of all nIds std::vector vRandom; // number of "tried" entries int nTried; // list of "tried" buckets std::vector > vvTried; // number of (unique) "new" entries int nNew; // list of "new" buckets std::vector > vvNew; protected: // Find an entry. CAddrInfo* Find(const CNetAddr& addr, int *pnId = NULL); // find an entry, creating it if necessary. // nTime and nServices of found node is updated, if necessary. CAddrInfo* Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = NULL); // Swap two elements in vRandom. void SwapRandom(unsigned int nRandomPos1, unsigned int nRandomPos2); // Return position in given bucket to replace. int SelectTried(int nKBucket); // Remove an element from a "new" bucket. // This is the only place where actual deletes occur. // They are never deleted while in the "tried" table, only possibly evicted back to the "new" table. int ShrinkNew(int nUBucket); // Move an entry from the "new" table(s) to the "tried" table // @pre vvUnkown[nOrigin].count(nId) != 0 void MakeTried(CAddrInfo& info, int nId, int nOrigin); // Mark an entry "good", possibly moving it from "new" to "tried". void Good_(const CService &addr, int64_t nTime); // Add an entry to the "new" table. bool Add_(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty); // Mark an entry as attempted to connect. void Attempt_(const CService &addr, int64_t nTime); // Select an address to connect to. // nUnkBias determines how much to favor new addresses over tried ones (min=0, max=100) CAddress Select_(int nUnkBias); #ifdef DEBUG_ADDRMAN // Perform consistency check. Returns an error code or zero. int Check_(); #endif // Select several addresses at once. void GetAddr_(std::vector &vAddr); void GetOnlineAddr_(std::vector &vAddr); // Mark an entry as currently-connected-to. void Connected_(const CService &addr, int64_t nTime); public: typedef std::map MapUnkIds; // For MSVC macro IMPLEMENT_SERIALIZE ( LOCK(cs); unsigned char nVersion = 0; READWRITE(nVersion); READWRITE(nKey); READWRITE(nNew); READWRITE(nTried); CAddrMan *am = const_cast(this); if (fWrite) { int nUBuckets = ADDRMAN_NEW_BUCKET_COUNT; READWRITE(nUBuckets); MapUnkIds mapUnkIds; int nIds = 0; for (std::map::iterator it = am->mapInfo.begin(); it != am->mapInfo.end(); it++) { if (nIds == nNew) break; // this means nNew was wrong, oh ow mapUnkIds[(*it).first] = nIds; CAddrInfo &info = (*it).second; if (info.nRefCount) { READWRITE(info); nIds++; } } nIds = 0; for (std::map::iterator it = am->mapInfo.begin(); it != am->mapInfo.end(); it++) { if (nIds == nTried) break; /* this means nTried was wrong, oh ow */ CAddrInfo &info = (*it).second; if (info.fInTried) { READWRITE(info); nIds++; } } for ( std::vector >::iterator it = am->vvNew.begin(); it != am->vvNew.end(); it++ ) { std::set &vNew = (*it); int nSize = int( vNew.size() ); READWRITE(nSize); for (std::set::iterator it2 = vNew.begin(); it2 != vNew.end(); it2++) { int nIndex = mapUnkIds[*it2]; READWRITE(nIndex); } } } else { int nUBuckets = 0; READWRITE(nUBuckets); am->nIdCount = 0; am->mapInfo.clear(); am->mapAddr.clear(); am->vRandom.clear(); am->vvTried = std::vector >( ADDRMAN_TRIED_BUCKET_COUNT, std::vector(0) ); am->vvNew = std::vector >( ADDRMAN_NEW_BUCKET_COUNT, std::set() ); for (int n = 0; n < am->nNew; n++) { CAddrInfo &info = am->mapInfo[n]; READWRITE(info); am->mapAddr[info] = n; info.nRandomPos = int( vRandom.size() ); am->vRandom.push_back(n); if (nUBuckets != ADDRMAN_NEW_BUCKET_COUNT) { am->vvNew[info.GetNewBucket(am->nKey)].insert(n); info.nRefCount++; } } am->nIdCount = am->nNew; int nLost = 0; for (int n = 0; n < am->nTried; n++) { CAddrInfo info; READWRITE(info); std::vector &vTried = am->vvTried[info.GetTriedBucket(am->nKey)]; if (vTried.size() < ADDRMAN_TRIED_BUCKET_SIZE) { info.nRandomPos = int( vRandom.size() ); info.fInTried = true; am->vRandom.push_back(am->nIdCount); am->mapInfo[am->nIdCount] = info; am->mapAddr[info] = am->nIdCount; vTried.push_back(am->nIdCount); am->nIdCount++; } else { nLost++; } } am->nTried -= nLost; for (int b = 0; b < nUBuckets; b++) { std::set &vNew = am->vvNew[b]; int nSize = 0; READWRITE(nSize); for (int n = 0; n < nSize; n++) { int nIndex = 0; READWRITE(nIndex); CAddrInfo &info = am->mapInfo[nIndex]; if ( (nUBuckets == ADDRMAN_NEW_BUCKET_COUNT) && (info.nRefCount < ADDRMAN_NEW_BUCKETS_PER_ADDRESS) ) { info.nRefCount++; vNew.insert(nIndex); } } } } ) CAddrMan() : vRandom(0), vvTried(ADDRMAN_TRIED_BUCKET_COUNT, std::vector(0)), vvNew(ADDRMAN_NEW_BUCKET_COUNT, std::set()) { nKey.resize(32); RAND_bytes(&nKey[0], 32); nIdCount = 0; nTried = 0; nNew = 0; } // Return the number of (unique) addresses in all tables. int size() { return (int) vRandom.size(); } // Consistency check void Check() { #ifdef DEBUG_ADDRMAN { LOCK(cs); int err; if ((err=Check_())) printf("ADDRMAN CONSISTENCY CHECK FAILED!!! err=%i\n", err); } #endif } // Add a single address. bool Add(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty = 0) { bool fRet = false; { LOCK(cs); Check(); fRet |= Add_(addr, source, nTimePenalty); Check(); } if (fRet) printf("Added %s from %s: %i tried, %i new\n", addr.ToStringIPPort().c_str(), source.ToString().c_str(), nTried, nNew); return fRet; } // Add multiple addresses. bool Add(const std::vector &vAddr, const CNetAddr& source, int64_t nTimePenalty = 0) { int nAdd = 0; { LOCK(cs); Check(); for (std::vector::const_iterator it = vAddr.begin(); it != vAddr.end(); it++) nAdd += Add_(*it, source, nTimePenalty) ? 1 : 0; Check(); } if (nAdd) printf("Added %i addresses from %s: %i tried, %i new\n", nAdd, source.ToString().c_str(), nTried, nNew); return nAdd > 0; } // Mark an entry as accessible. void Good(const CService &addr, int64_t nTime = GetAdjustedTime()) { { LOCK(cs); Check(); Good_(addr, nTime); Check(); } } // Mark an entry as connection attempted to. void Attempt(const CService &addr, int64_t nTime = GetAdjustedTime()) { { LOCK(cs); Check(); Attempt_(addr, nTime); Check(); } } // Choose an address to connect to. // nUnkBias determines how much "new" entries are favored over "tried" ones (0-100). CAddress Select(int nUnkBias = 50) { CAddress addrRet; { LOCK(cs); Check(); addrRet = Select_(nUnkBias); Check(); } return addrRet; } // Return a bunch of addresses, selected at random. std::vector GetAddr() { Check(); std::vector vAddr; { LOCK(cs); GetAddr_(vAddr); } Check(); return vAddr; } std::vector GetOnlineAddr() { Check(); std::vector vAddr; { LOCK(cs); GetOnlineAddr_(vAddr); } Check(); return vAddr; } // Mark an entry as currently-connected-to. void Connected(const CService &addr, int64_t nTime = GetAdjustedTime()) { { LOCK(cs); Check(); Connected_(addr, nTime); Check(); } } }; #endif