// Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include "key.h" // Generate a private key from just the secret parameter int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key) { int ok = 0; BN_CTX *ctx = NULL; EC_POINT *pub_key = NULL; if (!eckey) return 0; const EC_GROUP *group = EC_KEY_get0_group(eckey); if ((ctx = BN_CTX_new()) == NULL) goto err; pub_key = EC_POINT_new(group); if (pub_key == NULL) goto err; if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx)) goto err; EC_KEY_set_private_key(eckey,priv_key); EC_KEY_set_public_key(eckey,pub_key); ok = 1; err: if (pub_key) EC_POINT_free(pub_key); if (ctx != NULL) BN_CTX_free(ctx); return(ok); } // Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields // recid selects which key is recovered // if check is non-zero, additional checks are performed int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check) { if (!eckey) return 0; int ret = 0; BN_CTX *ctx = NULL; BIGNUM *x = NULL; BIGNUM *e = NULL; BIGNUM *order = NULL; BIGNUM *sor = NULL; BIGNUM *eor = NULL; BIGNUM *field = NULL; EC_POINT *R = NULL; EC_POINT *O = NULL; EC_POINT *Q = NULL; BIGNUM *rr = NULL; BIGNUM *zero = NULL; int n = 0; int i = recid / 2; const EC_GROUP *group = EC_KEY_get0_group(eckey); if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; } BN_CTX_start(ctx); order = BN_CTX_get(ctx); if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; } x = BN_CTX_get(ctx); if (!BN_copy(x, order)) { ret=-1; goto err; } if (!BN_mul_word(x, i)) { ret=-1; goto err; } if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; } field = BN_CTX_get(ctx); if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; } if (BN_cmp(x, field) >= 0) { ret=0; goto err; } if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; } if (check) { if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; } if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; } } if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } n = EC_GROUP_get_degree(group); e = BN_CTX_get(ctx); if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; } if (8*msglen > n) BN_rshift(e, e, 8-(n & 7)); zero = BN_CTX_get(ctx); if (!BN_zero(zero)) { ret=-1; goto err; } if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; } rr = BN_CTX_get(ctx); if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; } sor = BN_CTX_get(ctx); if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; } eor = BN_CTX_get(ctx); if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; } if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; } if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; } ret = 1; err: if (ctx) { BN_CTX_end(ctx); BN_CTX_free(ctx); } if (R != NULL) EC_POINT_free(R); if (O != NULL) EC_POINT_free(O); if (Q != NULL) EC_POINT_free(Q); return ret; } int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) { while (c1len > c2len) { if (*c1) return 1; c1++; c1len--; } while (c2len > c1len) { if (*c2) return -1; c2++; c2len--; } while (c1len > 0) { if (*c1 > *c2) return 1; if (*c2 > *c1) return -1; c1++; c2++; c1len--; } return 0; } // Order of secp256k1's generator minus 1. const unsigned char vchMaxModOrder[32] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40 }; // Half of the order of secp256k1's generator minus 1. const unsigned char vchMaxModHalfOrder[32] = { 0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0x5D,0x57,0x6E,0x73,0x57,0xA4,0x50,0x1D, 0xDF,0xE9,0x2F,0x46,0x68,0x1B,0x20,0xA0 }; const unsigned char *vchZero = NULL; void CKey::SetCompressedPubKey() { EC_KEY_set_conv_form(pkey, POINT_CONVERSION_COMPRESSED); fCompressedPubKey = true; } void CKey::Reset() { fCompressedPubKey = false; if (pkey != NULL) EC_KEY_free(pkey); pkey = EC_KEY_new_by_curve_name(NID_secp256k1); if (pkey == NULL) throw key_error("CKey::CKey() : EC_KEY_new_by_curve_name failed"); fSet = false; } CKey::CKey() { pkey = NULL; Reset(); } CKey::CKey(const CKey& b) { pkey = EC_KEY_dup(b.pkey); if (pkey == NULL) throw key_error("CKey::CKey(const CKey&) : EC_KEY_dup failed"); fSet = b.fSet; fCompressedPubKey = b.fCompressedPubKey; } CKey& CKey::operator=(const CKey& b) { if (!EC_KEY_copy(pkey, b.pkey)) throw key_error("CKey::operator=(const CKey&) : EC_KEY_copy failed"); fSet = b.fSet; fCompressedPubKey = b.fCompressedPubKey; return (*this); } CKey::~CKey() { EC_KEY_free(pkey); } bool CKey::IsNull() const { return !fSet; } bool CKey::IsCompressed() const { return fCompressedPubKey; } bool CKey::CheckSignatureElement(const unsigned char *vch, int len, bool half) { return CompareBigEndian(vch, len, vchZero, 0) > 0 && CompareBigEndian(vch, len, half ? vchMaxModHalfOrder : vchMaxModOrder, 32) <= 0; } bool CKey::ReserealizeSignature(std::vector& vchSig) { if (vchSig.empty()) return false; unsigned char *pos = &vchSig[0]; ECDSA_SIG *sig = d2i_ECDSA_SIG(NULL, (const unsigned char **)&pos, vchSig.size()); if (sig == NULL) return false; bool ret = false; int nSize = i2d_ECDSA_SIG(sig, NULL); if (nSize > 0) { vchSig.resize(nSize); // grow or shrink as needed pos = &vchSig[0]; i2d_ECDSA_SIG(sig, &pos); ret = true; } ECDSA_SIG_free(sig); return ret; } void CKey::MakeNewKey(bool fCompressed) { if (!EC_KEY_generate_key(pkey)) throw key_error("CKey::MakeNewKey() : EC_KEY_generate_key failed"); if (fCompressed) SetCompressedPubKey(); fSet = true; } bool CKey::SetPrivKey(const CPrivKey& vchPrivKey) { const unsigned char* pbegin = &vchPrivKey[0]; if (d2i_ECPrivateKey(&pkey, &pbegin, vchPrivKey.size())) { // In testing, d2i_ECPrivateKey can return true // but fill in pkey with a key that fails // EC_KEY_check_key, so: if (EC_KEY_check_key(pkey)) { fSet = true; return true; } } // If vchPrivKey data is bad d2i_ECPrivateKey() can // leave pkey in a state where calling EC_KEY_free() // crashes. To avoid that, set pkey to NULL and // leak the memory (a leak is better than a crash) pkey = NULL; Reset(); return false; } bool CKey::SetSecret(const CSecret& vchSecret, bool fCompressed) { EC_KEY_free(pkey); pkey = EC_KEY_new_by_curve_name(NID_secp256k1); if (pkey == NULL) throw key_error("CKey::SetSecret() : EC_KEY_new_by_curve_name failed"); if (vchSecret.size() != 32) throw key_error("CKey::SetSecret() : secret must be 32 bytes"); BIGNUM *bn = BN_bin2bn(&vchSecret[0],32,BN_new()); if (bn == NULL) throw key_error("CKey::SetSecret() : BN_bin2bn failed"); if (!EC_KEY_regenerate_key(pkey,bn)) { BN_clear_free(bn); throw key_error("CKey::SetSecret() : EC_KEY_regenerate_key failed"); } BN_clear_free(bn); fSet = true; if (fCompressed || fCompressedPubKey) SetCompressedPubKey(); return true; } CSecret CKey::GetSecret(bool &fCompressed) const { CSecret vchRet; vchRet.resize(32); const BIGNUM *bn = EC_KEY_get0_private_key(pkey); int nBytes = BN_num_bytes(bn); if (bn == NULL) throw key_error("CKey::GetSecret() : EC_KEY_get0_private_key failed"); int n=BN_bn2bin(bn,&vchRet[32 - nBytes]); if (n != nBytes) throw key_error("CKey::GetSecret(): BN_bn2bin failed"); fCompressed = fCompressedPubKey; return vchRet; } CPrivKey CKey::GetPrivKey() const { int nSize = i2d_ECPrivateKey(pkey, NULL); if (!nSize) throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey failed"); CPrivKey vchPrivKey(nSize, 0); unsigned char* pbegin = &vchPrivKey[0]; if (i2d_ECPrivateKey(pkey, &pbegin) != nSize) throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey returned unexpected size"); return vchPrivKey; } bool CKey::SetPubKey(const CPubKey& vchPubKey) { const unsigned char* pbegin = &vchPubKey.vchPubKey[0]; if (o2i_ECPublicKey(&pkey, &pbegin, vchPubKey.vchPubKey.size())) { fSet = true; if (vchPubKey.vchPubKey.size() == 33) SetCompressedPubKey(); return true; } pkey = NULL; Reset(); return false; } CPubKey CKey::GetPubKey() const { int nSize = i2o_ECPublicKey(pkey, NULL); if (!nSize) throw key_error("CKey::GetPubKey() : i2o_ECPublicKey failed"); std::vector vchPubKey(nSize, 0); unsigned char* pbegin = &vchPubKey[0]; if (i2o_ECPublicKey(pkey, &pbegin) != nSize) throw key_error("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size"); return CPubKey(vchPubKey); } bool CKey::Sign(uint256 hash, std::vector& vchSig) { vchSig.clear(); ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); if (sig==NULL) return false; const EC_GROUP *group = EC_KEY_get0_group(pkey); CBigNum order, halforder; EC_GROUP_get_order(group, &order, NULL); BN_rshift1(&halforder, &order); // enforce low S values, by negating the value (modulo the order) if above order/2. if (BN_cmp(sig->s, &halforder) > 0) { BN_sub(sig->s, &order, sig->s); } unsigned int nSize = ECDSA_size(pkey); vchSig.resize(nSize); // Make sure it is big enough unsigned char *pos = &vchSig[0]; nSize = i2d_ECDSA_SIG(sig, &pos); ECDSA_SIG_free(sig); vchSig.resize(nSize); // Shrink to fit actual size // Testing our new signature if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1) { vchSig.clear(); return false; } return true; } // create a compact signature (65 bytes), which allows reconstructing the used public key // The format is one header byte, followed by two times 32 bytes for the serialized r and s values. // The header byte: 0x1B = first key with even y, 0x1C = first key with odd y, // 0x1D = second key with even y, 0x1E = second key with odd y bool CKey::SignCompact(uint256 hash, std::vector& vchSig) { bool fOk = false; ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); if (sig==NULL) return false; const EC_GROUP *group = EC_KEY_get0_group(pkey); CBigNum order, halforder; EC_GROUP_get_order(group, &order, NULL); BN_rshift1(&halforder, &order); // enforce low S values, by negating the value (modulo the order) if above order/2. if (BN_cmp(sig->s, &halforder) > 0) { BN_sub(sig->s, &order, sig->s); } vchSig.clear(); vchSig.resize(65,0); int nBitsR = BN_num_bits(sig->r); int nBitsS = BN_num_bits(sig->s); if (nBitsR <= 256 && nBitsS <= 256) { int8_t nRecId = -1; for (int8_t i=0; i<4; i++) { CKey keyRec; keyRec.fSet = true; if (fCompressedPubKey) keyRec.SetCompressedPubKey(); if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) if (keyRec.GetPubKey() == this->GetPubKey()) { nRecId = i; break; } } if (nRecId == -1) { ECDSA_SIG_free(sig); throw key_error("CKey::SignCompact() : unable to construct recoverable key"); } vchSig[0] = nRecId+27+(fCompressedPubKey ? 4 : 0); BN_bn2bin(sig->r,&vchSig[33-(nBitsR+7)/8]); BN_bn2bin(sig->s,&vchSig[65-(nBitsS+7)/8]); fOk = true; } ECDSA_SIG_free(sig); return fOk; } // reconstruct public key from a compact signature // This is only slightly more CPU intensive than just verifying it. // If this function succeeds, the recovered public key is guaranteed to be valid // (the signature is a valid signature of the given data for that key) bool CKey::SetCompactSignature(uint256 hash, const std::vector& vchSig) { if (vchSig.size() != 65) return false; int nV = vchSig[0]; if (nV<27 || nV>=35) return false; ECDSA_SIG *sig = ECDSA_SIG_new(); BN_bin2bn(&vchSig[1],32,sig->r); BN_bin2bn(&vchSig[33],32,sig->s); EC_KEY_free(pkey); pkey = EC_KEY_new_by_curve_name(NID_secp256k1); if (nV >= 31) { SetCompressedPubKey(); nV -= 4; } if (ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), nV - 27, 0) == 1) { fSet = true; ECDSA_SIG_free(sig); return true; } ECDSA_SIG_free(sig); return false; } bool CKey::Verify(uint256 hash, const std::vector& vchSig) { if (vchSig.empty()) return false; // New versions of OpenSSL will reject non-canonical DER signatures. de/re-serialize first. unsigned char *norm_der = NULL; ECDSA_SIG *norm_sig = ECDSA_SIG_new(); const unsigned char* sigptr = &vchSig[0]; assert(norm_sig); if (d2i_ECDSA_SIG(&norm_sig, &sigptr, vchSig.size()) == NULL) { /* As of OpenSSL 1.0.0p d2i_ECDSA_SIG frees and nulls the pointer on * error. But OpenSSL's own use of this function redundantly frees the * result. As ECDSA_SIG_free(NULL) is a no-op, and in the absence of a * clear contract for the function behaving the same way is more * conservative. */ ECDSA_SIG_free(norm_sig); return false; } int derlen = i2d_ECDSA_SIG(norm_sig, &norm_der); ECDSA_SIG_free(norm_sig); if (derlen <= 0) return false; // -1 = error, 0 = bad sig, 1 = good bool ret = ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), norm_der, derlen, pkey) == 1; OPENSSL_free(norm_der); return ret; } bool CKey::VerifyCompact(uint256 hash, const std::vector& vchSig) { CKey key; if (!key.SetCompactSignature(hash, vchSig)) return false; if (GetPubKey() != key.GetPubKey()) return false; return true; } bool CKey::IsValid() { if (!fSet) return false; if (!EC_KEY_check_key(pkey)) return false; bool fCompr; CSecret secret = GetSecret(fCompr); CKey key2; key2.SetSecret(secret, fCompr); return GetPubKey() == key2.GetPubKey(); }