// Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file license.txt or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include "key.h" #include "util.h" // Generate a private key from just the secret parameter int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key) { int ok = 0; BN_CTX *ctx = NULL; EC_POINT *pub_key = NULL; if (!eckey) return 0; const EC_GROUP *group = EC_KEY_get0_group(eckey); if ((ctx = BN_CTX_new()) == NULL) goto err; pub_key = EC_POINT_new(group); if (pub_key == NULL) goto err; if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx)) goto err; EC_KEY_set_private_key(eckey,priv_key); EC_KEY_set_public_key(eckey,pub_key); ok = 1; err: if (pub_key) EC_POINT_free(pub_key); if (ctx != NULL) BN_CTX_free(ctx); return(ok); } // Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields // recid selects which key is recovered // if check is nonzero, additional checks are performed int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check) { if (!eckey) return 0; int ret = 0; BN_CTX *ctx = NULL; BIGNUM *x = NULL; BIGNUM *e = NULL; BIGNUM *order = NULL; BIGNUM *sor = NULL; BIGNUM *eor = NULL; BIGNUM *field = NULL; EC_POINT *R = NULL; EC_POINT *O = NULL; EC_POINT *Q = NULL; BIGNUM *rr = NULL; BIGNUM *zero = NULL; int n = 0; int i = recid / 2; const EC_GROUP *group = EC_KEY_get0_group(eckey); if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; } BN_CTX_start(ctx); order = BN_CTX_get(ctx); if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; } x = BN_CTX_get(ctx); if (!BN_copy(x, order)) { ret=-1; goto err; } if (!BN_mul_word(x, i)) { ret=-1; goto err; } if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; } field = BN_CTX_get(ctx); if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; } if (BN_cmp(x, field) >= 0) { ret=0; goto err; } if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; } if (check) { if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; } if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; } } if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; } n = EC_GROUP_get_degree(group); e = BN_CTX_get(ctx); if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; } if (8*msglen > n) BN_rshift(e, e, 8-(n & 7)); zero = BN_CTX_get(ctx); if (!BN_zero(zero)) { ret=-1; goto err; } if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; } rr = BN_CTX_get(ctx); if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; } sor = BN_CTX_get(ctx); if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; } eor = BN_CTX_get(ctx); if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; } if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; } if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; } ret = 1; err: if (ctx) { BN_CTX_end(ctx); BN_CTX_free(ctx); } if (R != NULL) EC_POINT_free(R); if (O != NULL) EC_POINT_free(O); if (Q != NULL) EC_POINT_free(Q); return ret; } void CKey::SetCompressedPubKey() { EC_KEY_set_conv_form(pkey, POINT_CONVERSION_COMPRESSED); fCompressedPubKey = true; } void CKey::Reset() { fCompressedPubKey = false; pkey = EC_KEY_new_by_curve_name(NID_secp256k1); if (pkey == NULL) throw key_error("CKey::CKey() : EC_KEY_new_by_curve_name failed"); fSet = false; } CKey::CKey() { Reset(); } CKey::CKey(const CKey& b) { pkey = EC_KEY_dup(b.pkey); if (pkey == NULL) throw key_error("CKey::CKey(const CKey&) : EC_KEY_dup failed"); fSet = b.fSet; } CKey& CKey::operator=(const CKey& b) { if (!EC_KEY_copy(pkey, b.pkey)) throw key_error("CKey::operator=(const CKey&) : EC_KEY_copy failed"); fSet = b.fSet; return (*this); } CKey::~CKey() { EC_KEY_free(pkey); } bool CKey::IsNull() const { return !fSet; } bool CKey::IsCompressed() const { return fCompressedPubKey; } void CKey::MakeNewKey(bool fCompressed) { if (!EC_KEY_generate_key(pkey)) throw key_error("CKey::MakeNewKey() : EC_KEY_generate_key failed"); if (fCompressed) SetCompressedPubKey(); fSet = true; } bool CKey::SetPrivKey(const CPrivKey& vchPrivKey) { const unsigned char* pbegin = &vchPrivKey[0]; if (!d2i_ECPrivateKey(&pkey, &pbegin, vchPrivKey.size())) return false; fSet = true; return true; } bool CKey::SetSecret(const CSecret& vchSecret, bool fCompressed) { EC_KEY_free(pkey); pkey = EC_KEY_new_by_curve_name(NID_secp256k1); if (pkey == NULL) throw key_error("CKey::SetSecret() : EC_KEY_new_by_curve_name failed"); if (vchSecret.size() != 32) throw key_error("CKey::SetSecret() : secret must be 32 bytes"); BIGNUM *bn = BN_bin2bn(&vchSecret[0],32,BN_new()); if (bn == NULL) throw key_error("CKey::SetSecret() : BN_bin2bn failed"); if (!EC_KEY_regenerate_key(pkey,bn)) { BN_clear_free(bn); throw key_error("CKey::SetSecret() : EC_KEY_regenerate_key failed"); } BN_clear_free(bn); fSet = true; if (fCompressed || fCompressedPubKey) SetCompressedPubKey(); return true; } CSecret CKey::GetSecret(bool &fCompressed) const { CSecret vchRet; vchRet.resize(32); const BIGNUM *bn = EC_KEY_get0_private_key(pkey); int nBytes = BN_num_bytes(bn); if (bn == NULL) throw key_error("CKey::GetSecret() : EC_KEY_get0_private_key failed"); int n=BN_bn2bin(bn,&vchRet[32 - nBytes]); if (n != nBytes) throw key_error("CKey::GetSecret(): BN_bn2bin failed"); fCompressed = fCompressedPubKey; return vchRet; } CPrivKey CKey::GetPrivKey() const { int nSize = i2d_ECPrivateKey(pkey, NULL); if (!nSize) throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey failed"); CPrivKey vchPrivKey(nSize, 0); unsigned char* pbegin = &vchPrivKey[0]; if (i2d_ECPrivateKey(pkey, &pbegin) != nSize) throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey returned unexpected size"); return vchPrivKey; } bool CKey::SetPubKey(const std::vector& vchPubKey) { const unsigned char* pbegin = &vchPubKey[0]; if (!o2i_ECPublicKey(&pkey, &pbegin, vchPubKey.size())) return false; fSet = true; if (vchPubKey.size() == 33) SetCompressedPubKey(); return true; } std::vector CKey::GetPubKey() const { int nSize = i2o_ECPublicKey(pkey, NULL); if (!nSize) throw key_error("CKey::GetPubKey() : i2o_ECPublicKey failed"); std::vector vchPubKey(nSize, 0); unsigned char* pbegin = &vchPubKey[0]; if (i2o_ECPublicKey(pkey, &pbegin) != nSize) throw key_error("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size"); return vchPubKey; } bool CKey::Sign(uint256 hash, std::vector& vchSig) { unsigned int nSize = ECDSA_size(pkey); vchSig.resize(nSize); // Make sure it is big enough if (!ECDSA_sign(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], &nSize, pkey)) { vchSig.clear(); return false; } vchSig.resize(nSize); // Shrink to fit actual size return true; } // create a compact signature (65 bytes), which allows reconstructing the used public key // The format is one header byte, followed by two times 32 bytes for the serialized r and s values. // The header byte: 0x1B = first key with even y, 0x1C = first key with odd y, // 0x1D = second key with even y, 0x1E = second key with odd y bool CKey::SignCompact(uint256 hash, std::vector& vchSig) { bool fOk = false; ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey); if (sig==NULL) return false; vchSig.clear(); vchSig.resize(65,0); int nBitsR = BN_num_bits(sig->r); int nBitsS = BN_num_bits(sig->s); if (nBitsR <= 256 && nBitsS <= 256) { int nRecId = -1; for (int i=0; i<4; i++) { CKey keyRec; keyRec.fSet = true; if (fCompressedPubKey) keyRec.SetCompressedPubKey(); if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) if (keyRec.GetPubKey() == this->GetPubKey()) { nRecId = i; break; } } if (nRecId == -1) throw key_error("CKey::SignCompact() : unable to construct recoverable key"); vchSig[0] = nRecId+27+(fCompressedPubKey ? 4 : 0); BN_bn2bin(sig->r,&vchSig[33-(nBitsR+7)/8]); BN_bn2bin(sig->s,&vchSig[65-(nBitsS+7)/8]); fOk = true; } ECDSA_SIG_free(sig); return fOk; } // reconstruct public key from a compact signature // This is only slightly more CPU intensive than just verifying it. // If this function succeeds, the recovered public key is guaranteed to be valid // (the signature is a valid signature of the given data for that key) bool CKey::SetCompactSignature(uint256 hash, const std::vector& vchSig) { if (vchSig.size() != 65) return false; int nV = vchSig[0]; if (nV<27 || nV>=35) return false; ECDSA_SIG *sig = ECDSA_SIG_new(); BN_bin2bn(&vchSig[1],32,sig->r); BN_bin2bn(&vchSig[33],32,sig->s); EC_KEY_free(pkey); pkey = EC_KEY_new_by_curve_name(NID_secp256k1); if (nV >= 31) { SetCompressedPubKey(); nV -= 4; } if (ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), nV - 27, 0) == 1) { fSet = true; ECDSA_SIG_free(sig); return true; } return false; } // Valid signature cache, to avoid doing expensive ECDSA signature checking // twice for every transaction (once when accepted into memory pool, and // again when accepted into the block chain) // sigdata_type is (signature hash, signature, public key): typedef boost::tuple, std::vector > sigdata_type; static std::set< sigdata_type> setValidSigCache; static CCriticalSection cs_sigcache; static bool GetValidSigCache(uint256 hash, const std::vector& vchSig, const std::vector& pubKey) { LOCK(cs_sigcache); sigdata_type k(hash, vchSig, pubKey); std::set::iterator mi = setValidSigCache.find(k); if (mi != setValidSigCache.end()) return true; return false; } static void SetValidSigCache(uint256 hash, const std::vector& vchSig, const std::vector& pubKey) { // DoS prevention: limit cache size to less than 10MB // (~200 bytes per cache entry times 50,000 entries) // Since there are a maximum of 20,000 signature operations per block // 50,000 is a reasonable default. int64 nMaxCacheSize = GetArg("-maxsigcachesize", 50000); if (nMaxCacheSize <= 0) return; LOCK(cs_sigcache); while (setValidSigCache.size() > nMaxCacheSize) { // Evict a random entry. Random because that helps // foil would-be DoS attackers who might try to pre-generate // and re-use a set of valid signatures just-slightly-greater // than our cache size. uint256 randomHash = GetRandHash(); std::vector unused; std::set::iterator it = setValidSigCache.lower_bound(sigdata_type(randomHash, unused, unused)); if (it == setValidSigCache.end()) it = setValidSigCache.begin(); setValidSigCache.erase(*it); } sigdata_type k(hash, vchSig, pubKey); setValidSigCache.insert(k); } bool CKey::Verify(uint256 hash, const std::vector& vchSig) { if (GetValidSigCache(hash, vchSig, GetPubKey())) return true; // -1 = error, 0 = bad sig, 1 = good if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1) return false; // good sig SetValidSigCache(hash, vchSig, GetPubKey()); return true; } bool CKey::VerifyCompact(uint256 hash, const std::vector& vchSig) { if (GetValidSigCache(hash, vchSig, GetPubKey())) return true; CKey key; if (!key.SetCompactSignature(hash, vchSig)) return false; if (GetPubKey() != key.GetPubKey()) return false; SetValidSigCache(hash, vchSig, GetPubKey()); return true; } bool CKey::IsValid() { if (!fSet) return false; bool fCompr; CSecret secret = GetSecret(fCompr); CKey key2; key2.SetSecret(secret, fCompr); return GetPubKey() == key2.GetPubKey(); }