// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_KEY_H #define BITCOIN_KEY_H #include #include #include "allocators.h" #include "uint256.h" #include // for EC_KEY definition // secp160k1 // const unsigned int PRIVATE_KEY_SIZE = 192; // const unsigned int PUBLIC_KEY_SIZE = 41; // const unsigned int SIGNATURE_SIZE = 48; // // secp192k1 // const unsigned int PRIVATE_KEY_SIZE = 222; // const unsigned int PUBLIC_KEY_SIZE = 49; // const unsigned int SIGNATURE_SIZE = 57; // // secp224k1 // const unsigned int PRIVATE_KEY_SIZE = 250; // const unsigned int PUBLIC_KEY_SIZE = 57; // const unsigned int SIGNATURE_SIZE = 66; // // secp256k1: // const unsigned int PRIVATE_KEY_SIZE = 279; // const unsigned int PUBLIC_KEY_SIZE = 65; // const unsigned int SIGNATURE_SIZE = 72; // // see www.keylength.com // script supports up to 75 for single byte push class key_error : public std::runtime_error { public: explicit key_error(const std::string& str) : std::runtime_error(str) {} }; // secure_allocator is defined in serialize.h // CPrivKey is a serialized private key, with all parameters included (279 bytes) typedef std::vector > CPrivKey; // CSecret is a serialization of just the secret parameter (32 bytes) typedef std::vector > CSecret; /** An encapsulated OpenSSL Elliptic Curve key (public and/or private) */ class CKey { protected: EC_KEY* pkey; bool fSet; bool fCompressedPubKey; void SetCompressedPubKey(); public: void Reset(); CKey(); CKey(const CKey& b); CKey& operator=(const CKey& b); ~CKey(); bool IsNull() const; bool IsCompressed() const; void MakeNewKey(bool fCompressed); bool SetPrivKey(const CPrivKey& vchPrivKey); bool SetSecret(const CSecret& vchSecret, bool fCompressed = false); CSecret GetSecret(bool &fCompressed) const; CPrivKey GetPrivKey() const; bool SetPubKey(const std::vector& vchPubKey); std::vector GetPubKey() const; bool Sign(uint256 hash, std::vector& vchSig); // create a compact signature (65 bytes), which allows reconstructing the used public key // The format is one header byte, followed by two times 32 bytes for the serialized r and s values. // The header byte: 0x1B = first key with even y, 0x1C = first key with odd y, // 0x1D = second key with even y, 0x1E = second key with odd y bool SignCompact(uint256 hash, std::vector& vchSig); // reconstruct public key from a compact signature // This is only slightly more CPU intensive than just verifying it. // If this function succeeds, the recovered public key is guaranteed to be valid // (the signature is a valid signature of the given data for that key) bool SetCompactSignature(uint256 hash, const std::vector& vchSig); bool Verify(uint256 hash, const std::vector& vchSig); // Verify a compact signature bool VerifyCompact(uint256 hash, const std::vector& vchSig); bool IsValid(); }; #endif