// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "alert.h" #include "checkpoints.h" #include "db.h" #include "txdb.h" #include "init.h" #include "ui_interface.h" #include "checkqueue.h" #include "kernel.h" #include #include #include #include "main.h" using namespace std; using namespace boost; CCriticalSection cs_setpwalletRegistered; set setpwalletRegistered; CCriticalSection cs_main; CTxMemPool mempool; unsigned int nTransactionsUpdated = 0; map mapBlockIndex; set > setStakeSeen; CBigNum bnProofOfWorkLimit(~uint256(0) >> 20); // "standard" scrypt target limit for proof of work, results with 0,000244140625 proof-of-work difficulty CBigNum bnProofOfStakeLegacyLimit(~uint256(0) >> 24); // proof of stake target limit from block #15000 and until 20 June 2013, results with 0,00390625 proof of stake difficulty CBigNum bnProofOfStakeLimit(~uint256(0) >> 27); // proof of stake target limit since 20 June 2013, equal to 0.03125 proof of stake difficulty CBigNum bnProofOfStakeHardLimit(~uint256(0) >> 30); // disabled temporarily, will be used in the future to fix minimal proof of stake difficulty at 0.25 uint256 nPoWBase = uint256("0x00000000ffff0000000000000000000000000000000000000000000000000000"); // difficulty-1 target CBigNum bnProofOfWorkLimitTestNet(~uint256(0) >> 16); unsigned int nStakeMinAge = 30 * nOneDay; // 30 days as zero time weight unsigned int nStakeMaxAge = 90 * nOneDay; // 90 days as full weight unsigned int nStakeTargetSpacing = 10 * 60; // 10-minute stakes spacing unsigned int nModifierInterval = 6 * nOneHour; // time to elapse before new modifier is computed int nCoinbaseMaturity = 500; CBlockIndex* pindexGenesisBlock = NULL; int nBestHeight = -1; uint256 nBestChainTrust = 0; uint256 nBestInvalidTrust = 0; uint256 hashBestChain = 0; CBlockIndex* pindexBest = NULL; int64_t nTimeBestReceived = 0; int nScriptCheckThreads = 0; CMedianFilter cPeerBlockCounts(5, 0); // Amount of blocks that other nodes claim to have map mapOrphanBlocks; multimap mapOrphanBlocksByPrev; set > setStakeSeenOrphan; map mapProofOfStake; map mapOrphanTransactions; map > mapOrphanTransactionsByPrev; // Constant stuff for coinbase transactions we create: CScript COINBASE_FLAGS; const string strMessageMagic = "NovaCoin Signed Message:\n"; // Settings int64_t nTransactionFee = MIN_TX_FEE; int64_t nMinimumInputValue = MIN_TXOUT_AMOUNT; // Ping and address broadcast intervals int64_t nPingInterval = 30 * 60; extern enum Checkpoints::CPMode CheckpointsMode; ////////////////////////////////////////////////////////////////////////////// // // dispatching functions // // These functions dispatch to one or all registered wallets void RegisterWallet(CWallet* pwalletIn) { { LOCK(cs_setpwalletRegistered); setpwalletRegistered.insert(pwalletIn); } } void UnregisterWallet(CWallet* pwalletIn) { { LOCK(cs_setpwalletRegistered); setpwalletRegistered.erase(pwalletIn); } } // check whether the passed transaction is from us bool static IsFromMe(CTransaction& tx) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) if (pwallet->IsFromMe(tx)) return true; return false; } // erases transaction with the given hash from all wallets void static EraseFromWallets(uint256 hash) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->EraseFromWallet(hash); } // make sure all wallets know about the given transaction, in the given block void SyncWithWallets(const CTransaction& tx, const CBlock* pblock, bool fUpdate, bool fConnect) { if (!fConnect) { // wallets need to refund inputs when disconnecting coinstake if (tx.IsCoinStake()) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) if (pwallet->IsFromMe(tx)) pwallet->DisableTransaction(tx); } return; } BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->AddToWalletIfInvolvingMe(tx, pblock, fUpdate); } // notify wallets about a new best chain void static SetBestChain(const CBlockLocator& loc) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->SetBestChain(loc); } // notify wallets about an updated transaction void static UpdatedTransaction(const uint256& hashTx) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->UpdatedTransaction(hashTx); } // dump all wallets void static PrintWallets(const CBlock& block) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->PrintWallet(block); } // notify wallets about an incoming inventory (for request counts) void static Inventory(const uint256& hash) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->Inventory(hash); } // ask wallets to resend their transactions void ResendWalletTransactions(bool fForceResend) { BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered) pwallet->ResendWalletTransactions(fForceResend); } ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // bool AddOrphanTx(const CTransaction& tx) { uint256 hash = tx.GetHash(); if (mapOrphanTransactions.count(hash)) return false; // Ignore big transactions, to avoid a // send-big-orphans memory exhaustion attack. If a peer has a legitimate // large transaction with a missing parent then we assume // it will rebroadcast it later, after the parent transaction(s) // have been mined or received. // 10,000 orphans, each of which is at most 5,000 bytes big is // at most 500 megabytes of orphans: size_t nSize = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION); if (nSize > 5000) { printf("ignoring large orphan tx (size: %" PRIszu ", hash: %s)\n", nSize, hash.ToString().substr(0,10).c_str()); return false; } mapOrphanTransactions[hash] = tx; BOOST_FOREACH(const CTxIn& txin, tx.vin) mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash); printf("stored orphan tx %s (mapsz %" PRIszu ")\n", hash.ToString().substr(0,10).c_str(), mapOrphanTransactions.size()); return true; } void static EraseOrphanTx(uint256 hash) { if (!mapOrphanTransactions.count(hash)) return; const CTransaction& tx = mapOrphanTransactions[hash]; BOOST_FOREACH(const CTxIn& txin, tx.vin) { mapOrphanTransactionsByPrev[txin.prevout.hash].erase(hash); if (mapOrphanTransactionsByPrev[txin.prevout.hash].empty()) mapOrphanTransactionsByPrev.erase(txin.prevout.hash); } mapOrphanTransactions.erase(hash); } unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) { unsigned int nEvicted = 0; while (mapOrphanTransactions.size() > nMaxOrphans) { // Evict a random orphan: uint256 randomhash = GetRandHash(); map::iterator it = mapOrphanTransactions.lower_bound(randomhash); if (it == mapOrphanTransactions.end()) it = mapOrphanTransactions.begin(); EraseOrphanTx(it->first); ++nEvicted; } return nEvicted; } ////////////////////////////////////////////////////////////////////////////// // // CTransaction and CTxIndex // bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout, CTxIndex& txindexRet) { SetNull(); if (!txdb.ReadTxIndex(prevout.hash, txindexRet)) return false; if (!ReadFromDisk(txindexRet.pos)) return false; if (prevout.n >= vout.size()) { SetNull(); return false; } return true; } bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout) { CTxIndex txindex; return ReadFromDisk(txdb, prevout, txindex); } bool CTransaction::ReadFromDisk(COutPoint prevout) { CTxDB txdb("r"); CTxIndex txindex; return ReadFromDisk(txdb, prevout, txindex); } bool CTransaction::IsStandard(string& strReason) const { if (nVersion > CTransaction::CURRENT_VERSION) { strReason = "version"; return false; } unsigned int nDataOut = 0; txnouttype whichType; BOOST_FOREACH(const CTxIn& txin, vin) { // Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed // keys. (remember the 520 byte limit on redeemScript size) That works // out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)=1624 // bytes of scriptSig, which we round off to 1650 bytes for some minor // future-proofing. That's also enough to spend a 20-of-20 // CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not // considered standard) if (txin.scriptSig.size() > 1650) { strReason = "scriptsig-size"; return false; } if (!txin.scriptSig.IsPushOnly()) { strReason = "scriptsig-not-pushonly"; return false; } if (!txin.scriptSig.HasCanonicalPushes()) { strReason = "txin-scriptsig-not-canonicalpushes"; return false; } } BOOST_FOREACH(const CTxOut& txout, vout) { if (!::IsStandard(txout.scriptPubKey, whichType)) { strReason = "scriptpubkey"; return false; } if (whichType == TX_NULL_DATA) nDataOut++; else { if (txout.nValue == 0) { strReason = "txout-value=0"; return false; } if (!txout.scriptPubKey.HasCanonicalPushes()) { strReason = "txout-scriptsig-not-canonicalpushes"; return false; } } } // only one OP_RETURN txout is permitted if (nDataOut > 1) { strReason = "multi-op-return"; return false; } return true; } // // Check transaction inputs, and make sure any // pay-to-script-hash transactions are evaluating IsStandard scripts // // Why bother? To avoid denial-of-service attacks; an attacker // can submit a standard HASH... OP_EQUAL transaction, // which will get accepted into blocks. The redemption // script can be anything; an attacker could use a very // expensive-to-check-upon-redemption script like: // DUP CHECKSIG DROP ... repeated 100 times... OP_1 // bool CTransaction::AreInputsStandard(const MapPrevTx& mapInputs) const { if (IsCoinBase()) return true; // Coinbases don't use vin normally for (unsigned int i = 0; i < vin.size(); i++) { const CTxOut& prev = GetOutputFor(vin[i], mapInputs); vector > vSolutions; txnouttype whichType; // get the scriptPubKey corresponding to this input: const CScript& prevScript = prev.scriptPubKey; if (!Solver(prevScript, whichType, vSolutions)) return false; int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions); if (nArgsExpected < 0) return false; // Transactions with extra stuff in their scriptSigs are // non-standard. Note that this EvalScript() call will // be quick, because if there are any operations // beside "push data" in the scriptSig the // IsStandard() call returns false vector > stack; if (!EvalScript(stack, vin[i].scriptSig, *this, i, false, 0)) return false; if (whichType == TX_SCRIPTHASH) { if (stack.empty()) return false; CScript subscript(stack.back().begin(), stack.back().end()); vector > vSolutions2; txnouttype whichType2; if (!Solver(subscript, whichType2, vSolutions2)) return false; if (whichType2 == TX_SCRIPTHASH) return false; int tmpExpected; tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2); if (tmpExpected < 0) return false; nArgsExpected += tmpExpected; } if (stack.size() != (unsigned int)nArgsExpected) return false; } return true; } unsigned int CTransaction::GetLegacySigOpCount() const { unsigned int nSigOps = 0; if (!IsCoinBase()) { // Coinbase scriptsigs are never executed, so there is // no sense in calculation of sigops. BOOST_FOREACH(const CTxIn& txin, vin) { nSigOps += txin.scriptSig.GetSigOpCount(false); } } BOOST_FOREACH(const CTxOut& txout, vout) { nSigOps += txout.scriptPubKey.GetSigOpCount(false); } return nSigOps; } int CMerkleTx::SetMerkleBranch(const CBlock* pblock) { if (fClient) { if (hashBlock == 0) return 0; } else { CBlock blockTmp; // Update the tx's hashBlock hashBlock = pblock->GetHash(); // Locate the transaction for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++) if (pblock->vtx[nIndex] == *(CTransaction*)this) break; if (nIndex == (int)pblock->vtx.size()) { vMerkleBranch.clear(); nIndex = -1; printf("ERROR: SetMerkleBranch() : couldn't find tx in block\n"); return 0; } // Fill in merkle branch vMerkleBranch = pblock->GetMerkleBranch(nIndex); } // Is the tx in a block that's in the main chain map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; const CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; return pindexBest->nHeight - pindex->nHeight + 1; } bool CTransaction::CheckTransaction() const { // Basic checks that don't depend on any context if (vin.empty()) return DoS(10, error("CTransaction::CheckTransaction() : vin empty")); if (vout.empty()) return DoS(10, error("CTransaction::CheckTransaction() : vout empty")); // Size limits if (::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE) return DoS(100, error("CTransaction::CheckTransaction() : size limits failed")); // Check for negative or overflow output values int64_t nValueOut = 0; for (unsigned int i = 0; i < vout.size(); i++) { const CTxOut& txout = vout[i]; if (txout.IsEmpty() && !IsCoinBase() && !IsCoinStake()) return DoS(100, error("CTransaction::CheckTransaction() : txout empty for user transaction")); if (txout.nValue < 0) return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue is negative")); if (txout.nValue > MAX_MONEY) return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue too high")); nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) return DoS(100, error("CTransaction::CheckTransaction() : txout total out of range")); } // Check for duplicate inputs set vInOutPoints; BOOST_FOREACH(const CTxIn& txin, vin) { if (vInOutPoints.count(txin.prevout)) return false; vInOutPoints.insert(txin.prevout); } if (IsCoinBase()) { if (vin[0].scriptSig.size() < 2 || vin[0].scriptSig.size() > 100) return DoS(100, error("CTransaction::CheckTransaction() : coinbase script size is invalid")); } else { BOOST_FOREACH(const CTxIn& txin, vin) if (txin.prevout.IsNull()) return DoS(10, error("CTransaction::CheckTransaction() : prevout is null")); } return true; } int64_t CTransaction::GetMinFee(unsigned int nBlockSize, bool fAllowFree, enum GetMinFee_mode mode, unsigned int nBytes) const { int64_t nMinTxFee = MIN_TX_FEE, nMinRelayTxFee = MIN_RELAY_TX_FEE; if(IsCoinStake()) { // Enforce 0.01 as minimum fee for coinstake nMinTxFee = CENT; nMinRelayTxFee = CENT; } // Base fee is either nMinTxFee or nMinRelayTxFee int64_t nBaseFee = (mode == GMF_RELAY) ? nMinRelayTxFee : nMinTxFee; unsigned int nNewBlockSize = nBlockSize + nBytes; int64_t nMinFee = (1 + (int64_t)nBytes / 1000) * nBaseFee; if (fAllowFree) { if (nBlockSize == 1) { // Transactions under 1K are free if (nBytes < 1000) nMinFee = 0; } else { // Free transaction area if (nNewBlockSize < 27000) nMinFee = 0; } } // To limit dust spam, require additional MIN_TX_FEE/MIN_RELAY_TX_FEE for // each non empty output which is less than 0.01 // // It's safe to ignore empty outputs here, because these inputs are allowed // only for coinbase and coinstake transactions. BOOST_FOREACH(const CTxOut& txout, vout) if (txout.nValue < CENT && !txout.IsEmpty()) nMinFee += nBaseFee; // Raise the price as the block approaches full if (nBlockSize != 1 && nNewBlockSize >= MAX_BLOCK_SIZE_GEN/2) { if (nNewBlockSize >= MAX_BLOCK_SIZE_GEN) return MAX_MONEY; nMinFee *= MAX_BLOCK_SIZE_GEN / (MAX_BLOCK_SIZE_GEN - nNewBlockSize); } if (!MoneyRange(nMinFee)) nMinFee = MAX_MONEY; return nMinFee; } bool CTxMemPool::accept(CTxDB& txdb, CTransaction &tx, bool fCheckInputs, bool* pfMissingInputs) { if (pfMissingInputs) *pfMissingInputs = false; // Time (prevent mempool memory exhaustion attack) if (tx.nTime > FutureDrift(GetAdjustedTime())) return tx.DoS(10, error("CTxMemPool::accept() : transaction timestamp is too far in the future")); if (!tx.CheckTransaction()) return error("CTxMemPool::accept() : CheckTransaction failed"); // Coinbase is only valid in a block, not as a loose transaction if (tx.IsCoinBase()) return tx.DoS(100, error("CTxMemPool::accept() : coinbase as individual tx")); // ppcoin: coinstake is also only valid in a block, not as a loose transaction if (tx.IsCoinStake()) return tx.DoS(100, error("CTxMemPool::accept() : coinstake as individual tx")); // To help v0.1.5 clients who would see it as a negative number if ((int64_t)tx.nLockTime > std::numeric_limits::max()) return error("CTxMemPool::accept() : not accepting nLockTime beyond 2038 yet"); // Rather not work on nonstandard transactions (unless -testnet) string strNonStd; if (!fTestNet && !tx.IsStandard(strNonStd)) return error("CTxMemPool::accept() : nonstandard transaction (%s)", strNonStd.c_str()); // Do we already have it? uint256 hash = tx.GetHash(); { LOCK(cs); if (mapTx.count(hash)) return false; } if (fCheckInputs) if (txdb.ContainsTx(hash)) return false; // Check for conflicts with in-memory transactions CTransaction* ptxOld = NULL; for (unsigned int i = 0; i < tx.vin.size(); i++) { COutPoint outpoint = tx.vin[i].prevout; if (mapNextTx.count(outpoint)) { // Disable replacement feature for now return false; // Allow replacing with a newer version of the same transaction if (i != 0) return false; ptxOld = mapNextTx[outpoint].ptx; if (ptxOld->IsFinal()) return false; if (!tx.IsNewerThan(*ptxOld)) return false; for (unsigned int i = 0; i < tx.vin.size(); i++) { COutPoint outpoint = tx.vin[i].prevout; if (!mapNextTx.count(outpoint) || mapNextTx[outpoint].ptx != ptxOld) return false; } break; } } if (fCheckInputs) { MapPrevTx mapInputs; map mapUnused; bool fInvalid = false; if (!tx.FetchInputs(txdb, mapUnused, false, false, mapInputs, fInvalid)) { if (fInvalid) return error("CTxMemPool::accept() : FetchInputs found invalid tx %s", hash.ToString().substr(0,10).c_str()); if (pfMissingInputs) *pfMissingInputs = true; return false; } // Check for non-standard pay-to-script-hash in inputs if (!tx.AreInputsStandard(mapInputs) && !fTestNet) return error("CTxMemPool::accept() : nonstandard transaction input"); // Note: if you modify this code to accept non-standard transactions, then // you should add code here to check that the transaction does a // reasonable number of ECDSA signature verifications. int64_t nFees = tx.GetValueIn(mapInputs)-tx.GetValueOut(); unsigned int nSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); // Don't accept it if it can't get into a block int64_t txMinFee = tx.GetMinFee(1000, true, GMF_RELAY, nSize); if (nFees < txMinFee) return error("CTxMemPool::accept() : not enough fees %s, %" PRId64 " < %" PRId64, hash.ToString().c_str(), nFees, txMinFee); // Continuously rate-limit free transactions // This mitigates 'penny-flooding' -- sending thousands of free transactions just to // be annoying or make others' transactions take longer to confirm. if (nFees < MIN_RELAY_TX_FEE) { static CCriticalSection cs; static double dFreeCount; static int64_t nLastTime; int64_t nNow = GetTime(); { LOCK(cs); // Use an exponentially decaying ~10-minute window: dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime)); nLastTime = nNow; // -limitfreerelay unit is thousand-bytes-per-minute // At default rate it would take over a month to fill 1GB if (dFreeCount > GetArg("-limitfreerelay", 15)*10*1000 && !IsFromMe(tx)) return error("CTxMemPool::accept() : free transaction rejected by rate limiter"); if (fDebug) printf("Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize); dFreeCount += nSize; } } // Check against previous transactions // This is done last to help prevent CPU exhaustion denial-of-service attacks. if (!tx.ConnectInputs(txdb, mapInputs, mapUnused, CDiskTxPos(1,1,1), pindexBest, false, false, true, STRICT_FLAGS)) { return error("CTxMemPool::accept() : ConnectInputs failed %s", hash.ToString().substr(0,10).c_str()); } } // Store transaction in memory { LOCK(cs); if (ptxOld) { printf("CTxMemPool::accept() : replacing tx %s with new version\n", ptxOld->GetHash().ToString().c_str()); remove(*ptxOld); } addUnchecked(hash, tx); } ///// are we sure this is ok when loading transactions or restoring block txes // If updated, erase old tx from wallet if (ptxOld) EraseFromWallets(ptxOld->GetHash()); printf("CTxMemPool::accept() : accepted %s (poolsz %" PRIszu ")\n", hash.ToString().substr(0,10).c_str(), mapTx.size()); return true; } bool CTransaction::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs, bool* pfMissingInputs) { return mempool.accept(txdb, *this, fCheckInputs, pfMissingInputs); } bool CTxMemPool::addUnchecked(const uint256& hash, CTransaction &tx) { // Add to memory pool without checking anything. Don't call this directly, // call CTxMemPool::accept to properly check the transaction first. { mapTx[hash] = tx; for (unsigned int i = 0; i < tx.vin.size(); i++) mapNextTx[tx.vin[i].prevout] = CInPoint(&mapTx[hash], i); nTransactionsUpdated++; } return true; } bool CTxMemPool::remove(CTransaction &tx) { // Remove transaction from memory pool { LOCK(cs); uint256 hash = tx.GetHash(); if (mapTx.count(hash)) { BOOST_FOREACH(const CTxIn& txin, tx.vin) mapNextTx.erase(txin.prevout); mapTx.erase(hash); nTransactionsUpdated++; } } return true; } void CTxMemPool::clear() { LOCK(cs); mapTx.clear(); mapNextTx.clear(); ++nTransactionsUpdated; } void CTxMemPool::queryHashes(std::vector& vtxid) { vtxid.clear(); LOCK(cs); vtxid.reserve(mapTx.size()); for (map::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) vtxid.push_back((*mi).first); } int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const { if (hashBlock == 0 || nIndex == -1) return 0; // Find the block it claims to be in map::iterator mi = mapBlockIndex.find(hashBlock); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; // Make sure the merkle branch connects to this block if (!fMerkleVerified) { if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot) return 0; fMerkleVerified = true; } pindexRet = pindex; return pindexBest->nHeight - pindex->nHeight + 1; } int CMerkleTx::GetBlocksToMaturity() const { if (!(IsCoinBase() || IsCoinStake())) return 0; return max(0, (nCoinbaseMaturity+20) - GetDepthInMainChain()); } bool CMerkleTx::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs) { if (fClient) { if (!IsInMainChain() && !ClientConnectInputs()) return false; return CTransaction::AcceptToMemoryPool(txdb, false); } else { return CTransaction::AcceptToMemoryPool(txdb, fCheckInputs); } } bool CMerkleTx::AcceptToMemoryPool() { CTxDB txdb("r"); return AcceptToMemoryPool(txdb); } bool CWalletTx::AcceptWalletTransaction(CTxDB& txdb, bool fCheckInputs) { { LOCK(mempool.cs); // Add previous supporting transactions first BOOST_FOREACH(CMerkleTx& tx, vtxPrev) { if (!(tx.IsCoinBase() || tx.IsCoinStake())) { uint256 hash = tx.GetHash(); if (!mempool.exists(hash) && !txdb.ContainsTx(hash)) tx.AcceptToMemoryPool(txdb, fCheckInputs); } } return AcceptToMemoryPool(txdb, fCheckInputs); } return false; } bool CWalletTx::AcceptWalletTransaction() { CTxDB txdb("r"); return AcceptWalletTransaction(txdb); } int CTxIndex::GetDepthInMainChain() const { // Read block header CBlock block; if (!block.ReadFromDisk(pos.nFile, pos.nBlockPos, false)) return 0; // Find the block in the index map::iterator mi = mapBlockIndex.find(block.GetHash()); if (mi == mapBlockIndex.end()) return 0; CBlockIndex* pindex = (*mi).second; if (!pindex || !pindex->IsInMainChain()) return 0; return 1 + nBestHeight - pindex->nHeight; } // Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock) { { LOCK(cs_main); { LOCK(mempool.cs); if (mempool.exists(hash)) { tx = mempool.lookup(hash); return true; } } CTxDB txdb("r"); CTxIndex txindex; if (tx.ReadFromDisk(txdb, COutPoint(hash, 0), txindex)) { CBlock block; if (block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false)) hashBlock = block.GetHash(); return true; } } return false; } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // static CBlockIndex* pblockindexFBBHLast; CBlockIndex* FindBlockByHeight(int nHeight) { CBlockIndex *pblockindex; if (nHeight < nBestHeight / 2) pblockindex = pindexGenesisBlock; else pblockindex = pindexBest; if (pblockindexFBBHLast && abs(nHeight - pblockindex->nHeight) > abs(nHeight - pblockindexFBBHLast->nHeight)) pblockindex = pblockindexFBBHLast; while (pblockindex->nHeight > nHeight) pblockindex = pblockindex->pprev; while (pblockindex->nHeight < nHeight) pblockindex = pblockindex->pnext; pblockindexFBBHLast = pblockindex; return pblockindex; } bool CBlock::ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions) { if (!fReadTransactions) { *this = pindex->GetBlockHeader(); return true; } if (!ReadFromDisk(pindex->nFile, pindex->nBlockPos, fReadTransactions)) return false; if (GetHash() != pindex->GetBlockHash()) return error("CBlock::ReadFromDisk() : GetHash() doesn't match index"); return true; } uint256 static GetOrphanRoot(const CBlock* pblock) { // Work back to the first block in the orphan chain while (mapOrphanBlocks.count(pblock->hashPrevBlock)) pblock = mapOrphanBlocks[pblock->hashPrevBlock]; return pblock->GetHash(); } // ppcoin: find block wanted by given orphan block uint256 WantedByOrphan(const CBlock* pblockOrphan) { // Work back to the first block in the orphan chain while (mapOrphanBlocks.count(pblockOrphan->hashPrevBlock)) pblockOrphan = mapOrphanBlocks[pblockOrphan->hashPrevBlock]; return pblockOrphan->hashPrevBlock; } // select stake target limit according to hard-coded conditions CBigNum inline GetProofOfStakeLimit(int nHeight, unsigned int nTime) { if(fTestNet) // separate proof of stake target limit for testnet return bnProofOfStakeLimit; if(nTime > TARGETS_SWITCH_TIME) // 27 bits since 20 July 2013 return bnProofOfStakeLimit; if(nHeight + 1 > 15000) // 24 bits since block 15000 return bnProofOfStakeLegacyLimit; if(nHeight + 1 > 14060) // 31 bits since block 14060 until 15000 return bnProofOfStakeHardLimit; return bnProofOfWorkLimit; // return bnProofOfWorkLimit of none matched } // miner's coin base reward based on nBits int64_t GetProofOfWorkReward(unsigned int nBits, int64_t nFees) { CBigNum bnSubsidyLimit = MAX_MINT_PROOF_OF_WORK; CBigNum bnTarget; bnTarget.SetCompact(nBits); CBigNum bnTargetLimit = bnProofOfWorkLimit; bnTargetLimit.SetCompact(bnTargetLimit.GetCompact()); // NovaCoin: subsidy is cut in half every 64x multiply of PoW difficulty // A reasonably continuous curve is used to avoid shock to market // (nSubsidyLimit / nSubsidy) ** 6 == bnProofOfWorkLimit / bnTarget // // Human readable form: // // nSubsidy = 100 / (diff ^ 1/6) // // Please note that we're using bisection to find an approximate solutuion CBigNum bnLowerBound = CENT; CBigNum bnUpperBound = bnSubsidyLimit; while (bnLowerBound + CENT <= bnUpperBound) { CBigNum bnMidValue = (bnLowerBound + bnUpperBound) / 2; if (bnMidValue * bnMidValue * bnMidValue * bnMidValue * bnMidValue * bnMidValue * bnTargetLimit > bnSubsidyLimit * bnSubsidyLimit * bnSubsidyLimit * bnSubsidyLimit * bnSubsidyLimit * bnSubsidyLimit * bnTarget) bnUpperBound = bnMidValue; else bnLowerBound = bnMidValue; } int64_t nSubsidy = bnUpperBound.getuint64(); nSubsidy = (nSubsidy / CENT) * CENT; if (fDebug && GetBoolArg("-printcreation")) printf("GetProofOfWorkReward() : create=%s nBits=0x%08x nSubsidy=%" PRId64 "\n", FormatMoney(nSubsidy).c_str(), nBits, nSubsidy); return min(nSubsidy, MAX_MINT_PROOF_OF_WORK) + nFees; } // miner's coin stake reward based on nBits and coin age spent (coin-days) int64_t GetProofOfStakeReward(int64_t nCoinAge, unsigned int nBits, int64_t nTime, bool bCoinYearOnly) { int64_t nRewardCoinYear, nSubsidy, nSubsidyLimit = 10 * COIN; // Stage 2 of emission process is mostly PoS-based. CBigNum bnRewardCoinYearLimit = MAX_MINT_PROOF_OF_STAKE; // Base stake mint rate, 100% year interest CBigNum bnTarget; bnTarget.SetCompact(nBits); CBigNum bnTargetLimit = GetProofOfStakeLimit(0, nTime); bnTargetLimit.SetCompact(bnTargetLimit.GetCompact()); // A reasonably continuous curve is used to avoid shock to market CBigNum bnLowerBound = 1 * CENT, // Lower interest bound is 1% per year bnUpperBound = bnRewardCoinYearLimit, // Upper interest bound is 100% per year bnMidPart, bnRewardPart; while (bnLowerBound + CENT <= bnUpperBound) { CBigNum bnMidValue = (bnLowerBound + bnUpperBound) / 2; // // Reward for coin-year is cut in half every 8x multiply of PoS difficulty // // (nRewardCoinYearLimit / nRewardCoinYear) ** 3 == bnProofOfStakeLimit / bnTarget // // Human readable form: nRewardCoinYear = 1 / (posdiff ^ 1/3) // bnMidPart = bnMidValue * bnMidValue * bnMidValue; bnRewardPart = bnRewardCoinYearLimit * bnRewardCoinYearLimit * bnRewardCoinYearLimit; if (bnMidPart * bnTargetLimit > bnRewardPart * bnTarget) bnUpperBound = bnMidValue; else bnLowerBound = bnMidValue; } nRewardCoinYear = bnUpperBound.getuint64(); nRewardCoinYear = min((nRewardCoinYear / CENT) * CENT, MAX_MINT_PROOF_OF_STAKE); if(bCoinYearOnly) return nRewardCoinYear; nSubsidy = nCoinAge * nRewardCoinYear * 33 / (365 * 33 + 8); // Set reasonable reward limit for large inputs // // This will stimulate large holders to use smaller inputs, that's good for the network protection if (fDebug && GetBoolArg("-printcreation") && nSubsidyLimit < nSubsidy) printf("GetProofOfStakeReward(): %s is greater than %s, coinstake reward will be truncated\n", FormatMoney(nSubsidy).c_str(), FormatMoney(nSubsidyLimit).c_str()); nSubsidy = min(nSubsidy, nSubsidyLimit); if (fDebug && GetBoolArg("-printcreation")) printf("GetProofOfStakeReward(): create=%s nCoinAge=%" PRId64 " nBits=%d\n", FormatMoney(nSubsidy).c_str(), nCoinAge, nBits); return nSubsidy; } static const int64_t nTargetTimespan = 7 * nOneDay; // one week // get proof of work blocks max spacing according to hard-coded conditions int64_t inline GetTargetSpacingWorkMax(int nHeight, unsigned int nTime) { if(nTime > TARGETS_SWITCH_TIME) return 3 * nStakeTargetSpacing; // 30 minutes on mainNet since 20 Jul 2013 00:00:00 if(fTestNet) return 3 * nStakeTargetSpacing; // 15 minutes on testNet return 12 * nStakeTargetSpacing; // 2 hours otherwise } // // maximum nBits value could possible be required nTime after // unsigned int ComputeMaxBits(CBigNum bnTargetLimit, unsigned int nBase, int64_t nTime) { CBigNum bnResult; bnResult.SetCompact(nBase); bnResult *= 2; while (nTime > 0 && bnResult < bnTargetLimit) { // Maximum 200% adjustment per day... bnResult *= 2; nTime -= nOneDay; } if (bnResult > bnTargetLimit) bnResult = bnTargetLimit; return bnResult.GetCompact(); } // // minimum amount of work that could possibly be required nTime after // minimum proof-of-work required was nBase // unsigned int ComputeMinWork(unsigned int nBase, int64_t nTime) { return ComputeMaxBits(bnProofOfWorkLimit, nBase, nTime); } // // minimum amount of stake that could possibly be required nTime after // minimum proof-of-stake required was nBase // unsigned int ComputeMinStake(unsigned int nBase, int64_t nTime, unsigned int nBlockTime) { return ComputeMaxBits(GetProofOfStakeLimit(0, nBlockTime), nBase, nTime); } // ppcoin: find last block index up to pindex const CBlockIndex* GetLastBlockIndex(const CBlockIndex* pindex, bool fProofOfStake) { while (pindex && pindex->pprev && (pindex->IsProofOfStake() != fProofOfStake)) pindex = pindex->pprev; return pindex; } unsigned int GetNextTargetRequired(const CBlockIndex* pindexLast, bool fProofOfStake) { if (pindexLast == NULL) return bnProofOfWorkLimit.GetCompact(); // genesis block CBigNum bnTargetLimit = !fProofOfStake ? bnProofOfWorkLimit : GetProofOfStakeLimit(pindexLast->nHeight, pindexLast->nTime); const CBlockIndex* pindexPrev = GetLastBlockIndex(pindexLast, fProofOfStake); if (pindexPrev->pprev == NULL) return bnTargetLimit.GetCompact(); // first block const CBlockIndex* pindexPrevPrev = GetLastBlockIndex(pindexPrev->pprev, fProofOfStake); if (pindexPrevPrev->pprev == NULL) return bnTargetLimit.GetCompact(); // second block int64_t nActualSpacing = pindexPrev->GetBlockTime() - pindexPrevPrev->GetBlockTime(); // ppcoin: target change every block // ppcoin: retarget with exponential moving toward target spacing CBigNum bnNew; bnNew.SetCompact(pindexPrev->nBits); int64_t nTargetSpacing = fProofOfStake? nStakeTargetSpacing : min(GetTargetSpacingWorkMax(pindexLast->nHeight, pindexLast->nTime), (int64_t) nStakeTargetSpacing * (1 + pindexLast->nHeight - pindexPrev->nHeight)); int64_t nInterval = nTargetTimespan / nTargetSpacing; bnNew *= ((nInterval - 1) * nTargetSpacing + nActualSpacing + nActualSpacing); bnNew /= ((nInterval + 1) * nTargetSpacing); if (bnNew > bnTargetLimit) bnNew = bnTargetLimit; return bnNew.GetCompact(); } bool CheckProofOfWork(uint256 hash, unsigned int nBits) { CBigNum bnTarget; bnTarget.SetCompact(nBits); // Check range if (bnTarget <= 0 || bnTarget > bnProofOfWorkLimit) return error("CheckProofOfWork() : nBits below minimum work"); // Check proof of work matches claimed amount if (hash > bnTarget.getuint256()) return error("CheckProofOfWork() : hash doesn't match nBits"); return true; } // Return maximum amount of blocks that other nodes claim to have int GetNumBlocksOfPeers() { return std::max(cPeerBlockCounts.median(), Checkpoints::GetTotalBlocksEstimate()); } bool IsInitialBlockDownload() { if (pindexBest == NULL || nBestHeight < Checkpoints::GetTotalBlocksEstimate()) return true; static int64_t nLastUpdate; static CBlockIndex* pindexLastBest; int64_t nCurrentTime = GetTime(); if (pindexBest != pindexLastBest) { pindexLastBest = pindexBest; nLastUpdate = nCurrentTime; } return (nCurrentTime - nLastUpdate < 10 && pindexBest->GetBlockTime() < nCurrentTime - nOneDay); } void static InvalidChainFound(CBlockIndex* pindexNew) { if (pindexNew->nChainTrust > nBestInvalidTrust) { nBestInvalidTrust = pindexNew->nChainTrust; CTxDB().WriteBestInvalidTrust(CBigNum(nBestInvalidTrust)); uiInterface.NotifyBlocksChanged(); } uint256 nBestInvalidBlockTrust = pindexNew->nChainTrust - pindexNew->pprev->nChainTrust; uint256 nBestBlockTrust = pindexBest->nHeight != 0 ? (pindexBest->nChainTrust - pindexBest->pprev->nChainTrust) : pindexBest->nChainTrust; printf("InvalidChainFound: invalid block=%s height=%d trust=%s blocktrust=%" PRId64 " date=%s\n", pindexNew->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->nHeight, CBigNum(pindexNew->nChainTrust).ToString().c_str(), nBestInvalidBlockTrust.Get64(), DateTimeStrFormat("%x %H:%M:%S", pindexNew->GetBlockTime()).c_str()); printf("InvalidChainFound: current best=%s height=%d trust=%s blocktrust=%" PRId64 " date=%s\n", hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, CBigNum(pindexBest->nChainTrust).ToString().c_str(), nBestBlockTrust.Get64(), DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str()); } void CBlock::UpdateTime(const CBlockIndex* pindexPrev) { nTime = max(GetBlockTime(), GetAdjustedTime()); } bool CTransaction::DisconnectInputs(CTxDB& txdb) { // Relinquish previous transactions' spent pointers if (!IsCoinBase()) { BOOST_FOREACH(const CTxIn& txin, vin) { COutPoint prevout = txin.prevout; // Get prev txindex from disk CTxIndex txindex; if (!txdb.ReadTxIndex(prevout.hash, txindex)) return error("DisconnectInputs() : ReadTxIndex failed"); if (prevout.n >= txindex.vSpent.size()) return error("DisconnectInputs() : prevout.n out of range"); // Mark outpoint as not spent txindex.vSpent[prevout.n].SetNull(); // Write back if (!txdb.UpdateTxIndex(prevout.hash, txindex)) return error("DisconnectInputs() : UpdateTxIndex failed"); } } // Remove transaction from index // This can fail if a duplicate of this transaction was in a chain that got // reorganized away. This is only possible if this transaction was completely // spent, so erasing it would be a no-op anyway. txdb.EraseTxIndex(*this); return true; } bool CTransaction::FetchInputs(CTxDB& txdb, const map& mapTestPool, bool fBlock, bool fMiner, MapPrevTx& inputsRet, bool& fInvalid) { // FetchInputs can return false either because we just haven't seen some inputs // (in which case the transaction should be stored as an orphan) // or because the transaction is malformed (in which case the transaction should // be dropped). If tx is definitely invalid, fInvalid will be set to true. fInvalid = false; if (IsCoinBase()) return true; // Coinbase transactions have no inputs to fetch. for (unsigned int i = 0; i < vin.size(); i++) { COutPoint prevout = vin[i].prevout; if (inputsRet.count(prevout.hash)) continue; // Got it already // Read txindex CTxIndex& txindex = inputsRet[prevout.hash].first; bool fFound = true; if ((fBlock || fMiner) && mapTestPool.count(prevout.hash)) { // Get txindex from current proposed changes txindex = mapTestPool.find(prevout.hash)->second; } else { // Read txindex from txdb fFound = txdb.ReadTxIndex(prevout.hash, txindex); } if (!fFound && (fBlock || fMiner)) return fMiner ? false : error("FetchInputs() : %s prev tx %s index entry not found", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); // Read txPrev CTransaction& txPrev = inputsRet[prevout.hash].second; if (!fFound || txindex.pos == CDiskTxPos(1,1,1)) { // Get prev tx from single transactions in memory { LOCK(mempool.cs); if (!mempool.exists(prevout.hash)) return error("FetchInputs() : %s mempool Tx prev not found %s", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); txPrev = mempool.lookup(prevout.hash); } if (!fFound) txindex.vSpent.resize(txPrev.vout.size()); } else { // Get prev tx from disk if (!txPrev.ReadFromDisk(txindex.pos)) return error("FetchInputs() : %s ReadFromDisk prev tx %s failed", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str()); } } // Make sure all prevout.n indexes are valid: for (unsigned int i = 0; i < vin.size(); i++) { const COutPoint prevout = vin[i].prevout; assert(inputsRet.count(prevout.hash) != 0); const CTxIndex& txindex = inputsRet[prevout.hash].first; const CTransaction& txPrev = inputsRet[prevout.hash].second; if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size()) { // Revisit this if/when transaction replacement is implemented and allows // adding inputs: fInvalid = true; return DoS(100, error("FetchInputs() : %s prevout.n out of range %d %" PRIszu " %" PRIszu " prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str())); } } return true; } const CTxOut& CTransaction::GetOutputFor(const CTxIn& input, const MapPrevTx& inputs) const { MapPrevTx::const_iterator mi = inputs.find(input.prevout.hash); if (mi == inputs.end()) throw std::runtime_error("CTransaction::GetOutputFor() : prevout.hash not found"); const CTransaction& txPrev = (mi->second).second; if (input.prevout.n >= txPrev.vout.size()) throw std::runtime_error("CTransaction::GetOutputFor() : prevout.n out of range"); return txPrev.vout[input.prevout.n]; } int64_t CTransaction::GetValueIn(const MapPrevTx& inputs) const { if (IsCoinBase()) return 0; int64_t nResult = 0; for (unsigned int i = 0; i < vin.size(); i++) { nResult += GetOutputFor(vin[i], inputs).nValue; } return nResult; } unsigned int CTransaction::GetP2SHSigOpCount(const MapPrevTx& inputs) const { if (IsCoinBase()) return 0; unsigned int nSigOps = 0; for (unsigned int i = 0; i < vin.size(); i++) { const CTxOut& prevout = GetOutputFor(vin[i], inputs); if (prevout.scriptPubKey.IsPayToScriptHash()) nSigOps += prevout.scriptPubKey.GetSigOpCount(vin[i].scriptSig); } return nSigOps; } bool CScriptCheck::operator()() const { const CScript &scriptSig = ptxTo->vin[nIn].scriptSig; if (!VerifyScript(scriptSig, scriptPubKey, *ptxTo, nIn, nFlags, nHashType)) return error("CScriptCheck() : %s VerifySignature failed", ptxTo->GetHash().ToString().substr(0,10).c_str()); return true; } bool VerifySignature(const CTransaction& txFrom, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType) { return CScriptCheck(txFrom, txTo, nIn, flags, nHashType)(); } bool CTransaction::ConnectInputs(CTxDB& txdb, MapPrevTx inputs, map& mapTestPool, const CDiskTxPos& posThisTx, const CBlockIndex* pindexBlock, bool fBlock, bool fMiner, bool fScriptChecks, unsigned int flags, std::vector *pvChecks) { // Take over previous transactions' spent pointers // fBlock is true when this is called from AcceptBlock when a new best-block is added to the blockchain // fMiner is true when called from the internal bitcoin miner // ... both are false when called from CTransaction::AcceptToMemoryPool if (!IsCoinBase()) { int64_t nValueIn = 0; int64_t nFees = 0; for (unsigned int i = 0; i < vin.size(); i++) { COutPoint prevout = vin[i].prevout; assert(inputs.count(prevout.hash) > 0); CTxIndex& txindex = inputs[prevout.hash].first; CTransaction& txPrev = inputs[prevout.hash].second; if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size()) return DoS(100, error("ConnectInputs() : %s prevout.n out of range %d %" PRIszu " %" PRIszu " prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str())); // If prev is coinbase or coinstake, check that it's matured if (txPrev.IsCoinBase() || txPrev.IsCoinStake()) for (const CBlockIndex* pindex = pindexBlock; pindex && pindexBlock->nHeight - pindex->nHeight < nCoinbaseMaturity; pindex = pindex->pprev) if (pindex->nBlockPos == txindex.pos.nBlockPos && pindex->nFile == txindex.pos.nFile) return error("ConnectInputs() : tried to spend %s at depth %d", txPrev.IsCoinBase() ? "coinbase" : "coinstake", pindexBlock->nHeight - pindex->nHeight); // ppcoin: check transaction timestamp if (txPrev.nTime > nTime) return DoS(100, error("ConnectInputs() : transaction timestamp earlier than input transaction")); // Check for negative or overflow input values nValueIn += txPrev.vout[prevout.n].nValue; if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return DoS(100, error("ConnectInputs() : txin values out of range")); } if (pvChecks) pvChecks->reserve(vin.size()); // The first loop above does all the inexpensive checks. // Only if ALL inputs pass do we perform expensive ECDSA signature checks. // Helps prevent CPU exhaustion attacks. for (unsigned int i = 0; i < vin.size(); i++) { COutPoint prevout = vin[i].prevout; assert(inputs.count(prevout.hash) > 0); CTxIndex& txindex = inputs[prevout.hash].first; CTransaction& txPrev = inputs[prevout.hash].second; // Check for conflicts (double-spend) // This doesn't trigger the DoS code on purpose; if it did, it would make it easier // for an attacker to attempt to split the network. if (!txindex.vSpent[prevout.n].IsNull()) return fMiner ? false : error("ConnectInputs() : %s prev tx already used at %s", GetHash().ToString().substr(0,10).c_str(), txindex.vSpent[prevout.n].ToString().c_str()); // Skip ECDSA signature verification when connecting blocks (fBlock=true) // before the last blockchain checkpoint. This is safe because block merkle hashes are // still computed and checked, and any change will be caught at the next checkpoint. if (fScriptChecks) { // Verify signature CScriptCheck check(txPrev, *this, i, flags, 0); if (pvChecks) { pvChecks->push_back(CScriptCheck()); check.swap(pvChecks->back()); } else if (!check()) { if (flags & STRICT_FLAGS) { // Don't trigger DoS code in case of STRICT_FLAGS caused failure. CScriptCheck check(txPrev, *this, i, flags & ~STRICT_FLAGS, 0); if (check()) return error("ConnectInputs() : %s strict VerifySignature failed", GetHash().ToString().substr(0,10).c_str()); } return DoS(100,error("ConnectInputs() : %s VerifySignature failed", GetHash().ToString().substr(0,10).c_str())); } } // Mark outpoints as spent txindex.vSpent[prevout.n] = posThisTx; // Write back if (fBlock || fMiner) { mapTestPool[prevout.hash] = txindex; } } if (IsCoinStake()) { if (nTime > Checkpoints::GetLastCheckpointTime()) { unsigned int nTxSize = GetSerializeSize(SER_NETWORK, PROTOCOL_VERSION); // coin stake tx earns reward instead of paying fee uint64_t nCoinAge; if (!GetCoinAge(txdb, nCoinAge)) return error("ConnectInputs() : %s unable to get coin age for coinstake", GetHash().ToString().substr(0,10).c_str()); int64_t nReward = GetValueOut() - nValueIn; int64_t nCalculatedReward = GetProofOfStakeReward(nCoinAge, pindexBlock->nBits, nTime) - GetMinFee(1, false, GMF_BLOCK, nTxSize) + CENT; if (nReward > nCalculatedReward) return DoS(100, error("ConnectInputs() : coinstake pays too much(actual=%" PRId64 " vs calculated=%" PRId64 ")", nReward, nCalculatedReward)); } } else { if (nValueIn < GetValueOut()) return DoS(100, error("ConnectInputs() : %s value in < value out", GetHash().ToString().substr(0,10).c_str())); // Tally transaction fees int64_t nTxFee = nValueIn - GetValueOut(); if (nTxFee < 0) return DoS(100, error("ConnectInputs() : %s nTxFee < 0", GetHash().ToString().substr(0,10).c_str())); nFees += nTxFee; if (!MoneyRange(nFees)) return DoS(100, error("ConnectInputs() : nFees out of range")); } } return true; } bool CTransaction::ClientConnectInputs() { if (IsCoinBase()) return false; // Take over previous transactions' spent pointers { LOCK(mempool.cs); int64_t nValueIn = 0; for (unsigned int i = 0; i < vin.size(); i++) { // Get prev tx from single transactions in memory COutPoint prevout = vin[i].prevout; if (!mempool.exists(prevout.hash)) return false; CTransaction& txPrev = mempool.lookup(prevout.hash); if (prevout.n >= txPrev.vout.size()) return false; // Verify signature if (!VerifySignature(txPrev, *this, i, SCRIPT_VERIFY_NOCACHE | SCRIPT_VERIFY_P2SH, 0)) return error("ClientConnectInputs() : VerifySignature failed"); ///// this is redundant with the mempool.mapNextTx stuff, ///// not sure which I want to get rid of ///// this has to go away now that posNext is gone // // Check for conflicts // if (!txPrev.vout[prevout.n].posNext.IsNull()) // return error("ConnectInputs() : prev tx already used"); // // // Flag outpoints as used // txPrev.vout[prevout.n].posNext = posThisTx; nValueIn += txPrev.vout[prevout.n].nValue; if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn)) return error("ClientConnectInputs() : txin values out of range"); } if (GetValueOut() > nValueIn) return false; } return true; } bool CBlock::DisconnectBlock(CTxDB& txdb, CBlockIndex* pindex) { // Disconnect in reverse order for (int i = vtx.size()-1; i >= 0; i--) if (!vtx[i].DisconnectInputs(txdb)) return false; // Update block index on disk without changing it in memory. // The memory index structure will be changed after the db commits. if (pindex->pprev) { CDiskBlockIndex blockindexPrev(pindex->pprev); blockindexPrev.hashNext = 0; if (!txdb.WriteBlockIndex(blockindexPrev)) return error("DisconnectBlock() : WriteBlockIndex failed"); } // ppcoin: clean up wallet after disconnecting coinstake BOOST_FOREACH(CTransaction& tx, vtx) SyncWithWallets(tx, this, false, false); return true; } static CCheckQueue scriptcheckqueue(128); void ThreadScriptCheck(void*) { vnThreadsRunning[THREAD_SCRIPTCHECK]++; RenameThread("novacoin-scriptch"); scriptcheckqueue.Thread(); vnThreadsRunning[THREAD_SCRIPTCHECK]--; } void ThreadScriptCheckQuit() { scriptcheckqueue.Quit(); } bool CBlock::ConnectBlock(CTxDB& txdb, CBlockIndex* pindex, bool fJustCheck) { // Check it again in case a previous version let a bad block in, but skip BlockSig checking if (!CheckBlock(!fJustCheck, !fJustCheck, false)) return false; // Do not allow blocks that contain transactions which 'overwrite' older transactions, // unless those are already completely spent. // If such overwrites are allowed, coinbases and transactions depending upon those // can be duplicated to remove the ability to spend the first instance -- even after // being sent to another address. // See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information. // This logic is not necessary for memory pool transactions, as AcceptToMemoryPool // already refuses previously-known transaction ids entirely. // This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC. // Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the // two in the chain that violate it. This prevents exploiting the issue against nodes in their // initial block download. bool fEnforceBIP30 = true; // Always active in NovaCoin bool fScriptChecks = pindex->nHeight >= Checkpoints::GetTotalBlocksEstimate(); //// issue here: it doesn't know the version unsigned int nTxPos; if (fJustCheck) // FetchInputs treats CDiskTxPos(1,1,1) as a special "refer to memorypool" indicator // Since we're just checking the block and not actually connecting it, it might not (and probably shouldn't) be on the disk to get the transaction from nTxPos = 1; else nTxPos = pindex->nBlockPos + ::GetSerializeSize(CBlock(), SER_DISK, CLIENT_VERSION) - (2 * GetSizeOfCompactSize(0)) + GetSizeOfCompactSize(vtx.size()); map mapQueuedChanges; CCheckQueueControl control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL); int64_t nFees = 0; int64_t nValueIn = 0; int64_t nValueOut = 0; unsigned int nSigOps = 0; BOOST_FOREACH(CTransaction& tx, vtx) { uint256 hashTx = tx.GetHash(); if (fEnforceBIP30) { CTxIndex txindexOld; if (txdb.ReadTxIndex(hashTx, txindexOld)) { BOOST_FOREACH(CDiskTxPos &pos, txindexOld.vSpent) if (pos.IsNull()) return false; } } nSigOps += tx.GetLegacySigOpCount(); if (nSigOps > MAX_BLOCK_SIGOPS) return DoS(100, error("ConnectBlock() : too many sigops")); CDiskTxPos posThisTx(pindex->nFile, pindex->nBlockPos, nTxPos); if (!fJustCheck) nTxPos += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION); MapPrevTx mapInputs; if (tx.IsCoinBase()) nValueOut += tx.GetValueOut(); else { bool fInvalid; if (!tx.FetchInputs(txdb, mapQueuedChanges, true, false, mapInputs, fInvalid)) return false; // Add in sigops done by pay-to-script-hash inputs; // this is to prevent a "rogue miner" from creating // an incredibly-expensive-to-validate block. nSigOps += tx.GetP2SHSigOpCount(mapInputs); if (nSigOps > MAX_BLOCK_SIGOPS) return DoS(100, error("ConnectBlock() : too many sigops")); int64_t nTxValueIn = tx.GetValueIn(mapInputs); int64_t nTxValueOut = tx.GetValueOut(); nValueIn += nTxValueIn; nValueOut += nTxValueOut; if (!tx.IsCoinStake()) nFees += nTxValueIn - nTxValueOut; unsigned int nFlags = SCRIPT_VERIFY_NOCACHE | SCRIPT_VERIFY_P2SH; if (tx.nTime >= CHECKLOCKTIMEVERIFY_SWITCH_TIME) { nFlags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY; // OP_CHECKSEQUENCEVERIFY is senseless without BIP68, so we're going disable it for now. // nFlags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY; } std::vector vChecks; if (!tx.ConnectInputs(txdb, mapInputs, mapQueuedChanges, posThisTx, pindex, true, false, fScriptChecks, nFlags, nScriptCheckThreads ? &vChecks : NULL)) return false; control.Add(vChecks); } mapQueuedChanges[hashTx] = CTxIndex(posThisTx, tx.vout.size()); } if (!control.Wait()) return DoS(100, false); if (IsProofOfWork()) { int64_t nBlockReward = GetProofOfWorkReward(nBits, nFees); // Check coinbase reward if (vtx[0].GetValueOut() > nBlockReward) return error("CheckBlock() : coinbase reward exceeded (actual=%" PRId64 " vs calculated=%" PRId64 ")", vtx[0].GetValueOut(), nBlockReward); } // track money supply and mint amount info pindex->nMint = nValueOut - nValueIn + nFees; pindex->nMoneySupply = (pindex->pprev? pindex->pprev->nMoneySupply : 0) + nValueOut - nValueIn; if (!txdb.WriteBlockIndex(CDiskBlockIndex(pindex))) return error("Connect() : WriteBlockIndex for pindex failed"); // fees are not collected by proof-of-stake miners // fees are destroyed to compensate the entire network if (fDebug && IsProofOfStake() && GetBoolArg("-printcreation")) printf("ConnectBlock() : destroy=%s nFees=%" PRId64 "\n", FormatMoney(nFees).c_str(), nFees); if (fJustCheck) return true; // Write queued txindex changes for (map::iterator mi = mapQueuedChanges.begin(); mi != mapQueuedChanges.end(); ++mi) { if (!txdb.UpdateTxIndex((*mi).first, (*mi).second)) return error("ConnectBlock() : UpdateTxIndex failed"); } // Update block index on disk without changing it in memory. // The memory index structure will be changed after the db commits. if (pindex->pprev) { CDiskBlockIndex blockindexPrev(pindex->pprev); blockindexPrev.hashNext = pindex->GetBlockHash(); if (!txdb.WriteBlockIndex(blockindexPrev)) return error("ConnectBlock() : WriteBlockIndex failed"); } // Watch for transactions paying to me BOOST_FOREACH(CTransaction& tx, vtx) SyncWithWallets(tx, this, true); return true; } bool static Reorganize(CTxDB& txdb, CBlockIndex* pindexNew) { printf("REORGANIZE\n"); // Find the fork CBlockIndex* pfork = pindexBest; CBlockIndex* plonger = pindexNew; while (pfork != plonger) { while (plonger->nHeight > pfork->nHeight) if ((plonger = plonger->pprev) == NULL) return error("Reorganize() : plonger->pprev is null"); if (pfork == plonger) break; if ((pfork = pfork->pprev) == NULL) return error("Reorganize() : pfork->pprev is null"); } // List of what to disconnect vector vDisconnect; for (CBlockIndex* pindex = pindexBest; pindex != pfork; pindex = pindex->pprev) vDisconnect.push_back(pindex); // List of what to connect vector vConnect; for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev) vConnect.push_back(pindex); reverse(vConnect.begin(), vConnect.end()); printf("REORGANIZE: Disconnect %" PRIszu " blocks; %s..%s\n", vDisconnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexBest->GetBlockHash().ToString().substr(0,20).c_str()); printf("REORGANIZE: Connect %" PRIszu " blocks; %s..%s\n", vConnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->GetBlockHash().ToString().substr(0,20).c_str()); // Disconnect shorter branch vector vResurrect; BOOST_FOREACH(CBlockIndex* pindex, vDisconnect) { CBlock block; if (!block.ReadFromDisk(pindex)) return error("Reorganize() : ReadFromDisk for disconnect failed"); if (!block.DisconnectBlock(txdb, pindex)) return error("Reorganize() : DisconnectBlock %s failed", pindex->GetBlockHash().ToString().substr(0,20).c_str()); // Queue memory transactions to resurrect BOOST_FOREACH(const CTransaction& tx, block.vtx) if (!(tx.IsCoinBase() || tx.IsCoinStake())) vResurrect.push_back(tx); } // Connect longer branch vector vDelete; for (unsigned int i = 0; i < vConnect.size(); i++) { CBlockIndex* pindex = vConnect[i]; CBlock block; if (!block.ReadFromDisk(pindex)) return error("Reorganize() : ReadFromDisk for connect failed"); if (!block.ConnectBlock(txdb, pindex)) { // Invalid block return error("Reorganize() : ConnectBlock %s failed", pindex->GetBlockHash().ToString().substr(0,20).c_str()); } // Queue memory transactions to delete BOOST_FOREACH(const CTransaction& tx, block.vtx) vDelete.push_back(tx); } if (!txdb.WriteHashBestChain(pindexNew->GetBlockHash())) return error("Reorganize() : WriteHashBestChain failed"); // Make sure it's successfully written to disk before changing memory structure if (!txdb.TxnCommit()) return error("Reorganize() : TxnCommit failed"); // Disconnect shorter branch BOOST_FOREACH(CBlockIndex* pindex, vDisconnect) if (pindex->pprev) pindex->pprev->pnext = NULL; // Connect longer branch BOOST_FOREACH(CBlockIndex* pindex, vConnect) if (pindex->pprev) pindex->pprev->pnext = pindex; // Resurrect memory transactions that were in the disconnected branch BOOST_FOREACH(CTransaction& tx, vResurrect) tx.AcceptToMemoryPool(txdb, false); // Delete redundant memory transactions that are in the connected branch BOOST_FOREACH(CTransaction& tx, vDelete) mempool.remove(tx); printf("REORGANIZE: done\n"); return true; } // Called from inside SetBestChain: attaches a block to the new best chain being built bool CBlock::SetBestChainInner(CTxDB& txdb, CBlockIndex *pindexNew) { uint256 hash = GetHash(); // Adding to current best branch if (!ConnectBlock(txdb, pindexNew) || !txdb.WriteHashBestChain(hash)) { txdb.TxnAbort(); InvalidChainFound(pindexNew); return false; } if (!txdb.TxnCommit()) return error("SetBestChain() : TxnCommit failed"); // Add to current best branch pindexNew->pprev->pnext = pindexNew; // Delete redundant memory transactions BOOST_FOREACH(CTransaction& tx, vtx) mempool.remove(tx); return true; } bool CBlock::SetBestChain(CTxDB& txdb, CBlockIndex* pindexNew) { uint256 hash = GetHash(); if (!txdb.TxnBegin()) return error("SetBestChain() : TxnBegin failed"); if (pindexGenesisBlock == NULL && hash == (!fTestNet ? hashGenesisBlock : hashGenesisBlockTestNet)) { txdb.WriteHashBestChain(hash); if (!txdb.TxnCommit()) return error("SetBestChain() : TxnCommit failed"); pindexGenesisBlock = pindexNew; } else if (hashPrevBlock == hashBestChain) { if (!SetBestChainInner(txdb, pindexNew)) return error("SetBestChain() : SetBestChainInner failed"); } else { // the first block in the new chain that will cause it to become the new best chain CBlockIndex *pindexIntermediate = pindexNew; // list of blocks that need to be connected afterwards std::vector vpindexSecondary; // Reorganize is costly in terms of db load, as it works in a single db transaction. // Try to limit how much needs to be done inside while (pindexIntermediate->pprev && pindexIntermediate->pprev->nChainTrust > pindexBest->nChainTrust) { vpindexSecondary.push_back(pindexIntermediate); pindexIntermediate = pindexIntermediate->pprev; } if (!vpindexSecondary.empty()) printf("Postponing %" PRIszu " reconnects\n", vpindexSecondary.size()); // Switch to new best branch if (!Reorganize(txdb, pindexIntermediate)) { txdb.TxnAbort(); InvalidChainFound(pindexNew); return error("SetBestChain() : Reorganize failed"); } // Connect further blocks BOOST_REVERSE_FOREACH(CBlockIndex *pindex, vpindexSecondary) { CBlock block; if (!block.ReadFromDisk(pindex)) { printf("SetBestChain() : ReadFromDisk failed\n"); break; } if (!txdb.TxnBegin()) { printf("SetBestChain() : TxnBegin 2 failed\n"); break; } // errors now are not fatal, we still did a reorganisation to a new chain in a valid way if (!block.SetBestChainInner(txdb, pindex)) break; } } // Update best block in wallet (so we can detect restored wallets) bool fIsInitialDownload = IsInitialBlockDownload(); if (!fIsInitialDownload) { const CBlockLocator locator(pindexNew); ::SetBestChain(locator); } // New best block hashBestChain = hash; pindexBest = pindexNew; pblockindexFBBHLast = NULL; nBestHeight = pindexBest->nHeight; nBestChainTrust = pindexNew->nChainTrust; nTimeBestReceived = GetTime(); nTransactionsUpdated++; uint256 nBestBlockTrust = pindexBest->nHeight != 0 ? (pindexBest->nChainTrust - pindexBest->pprev->nChainTrust) : pindexBest->nChainTrust; printf("SetBestChain: new best=%s height=%d trust=%s blocktrust=%" PRId64 " date=%s\n", hashBestChain.ToString().substr(0,20).c_str(), nBestHeight, CBigNum(nBestChainTrust).ToString().c_str(), nBestBlockTrust.Get64(), DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str()); // Check the version of the last 100 blocks to see if we need to upgrade: if (!fIsInitialDownload) { int nUpgraded = 0; const CBlockIndex* pindex = pindexBest; for (int i = 0; i < 100 && pindex != NULL; i++) { if (pindex->nVersion > CBlock::CURRENT_VERSION) ++nUpgraded; pindex = pindex->pprev; } if (nUpgraded > 0) printf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, CBlock::CURRENT_VERSION); if (nUpgraded > 100/2) // strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user: strMiscWarning = _("Warning: This version is obsolete, upgrade required!"); } std::string strCmd = GetArg("-blocknotify", ""); if (!fIsInitialDownload && !strCmd.empty()) { boost::replace_all(strCmd, "%s", hashBestChain.GetHex()); boost::thread t(runCommand, strCmd); // thread runs free } return true; } // ppcoin: total coin age spent in transaction, in the unit of coin-days. // Only those coins meeting minimum age requirement counts. As those // transactions not in main chain are not currently indexed so we // might not find out about their coin age. Older transactions are // guaranteed to be in main chain by sync-checkpoint. This rule is // introduced to help nodes establish a consistent view of the coin // age (trust score) of competing branches. bool CTransaction::GetCoinAge(CTxDB& txdb, uint64_t& nCoinAge) const { CBigNum bnCentSecond = 0; // coin age in the unit of cent-seconds nCoinAge = 0; if (IsCoinBase()) return true; BOOST_FOREACH(const CTxIn& txin, vin) { // First try finding the previous transaction in database CTransaction txPrev; CTxIndex txindex; if (!txPrev.ReadFromDisk(txdb, txin.prevout, txindex)) continue; // previous transaction not in main chain if (nTime < txPrev.nTime) return false; // Transaction timestamp violation // Read block header CBlock block; if (!block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false)) return false; // unable to read block of previous transaction if (block.GetBlockTime() + nStakeMinAge > nTime) continue; // only count coins meeting min age requirement int64_t nValueIn = txPrev.vout[txin.prevout.n].nValue; bnCentSecond += CBigNum(nValueIn) * (nTime-txPrev.nTime) / CENT; if (fDebug && GetBoolArg("-printcoinage")) printf("coin age nValueIn=%" PRId64 " nTimeDiff=%d bnCentSecond=%s\n", nValueIn, nTime - txPrev.nTime, bnCentSecond.ToString().c_str()); } CBigNum bnCoinDay = bnCentSecond * CENT / COIN / nOneDay; if (fDebug && GetBoolArg("-printcoinage")) printf("coin age bnCoinDay=%s\n", bnCoinDay.ToString().c_str()); nCoinAge = bnCoinDay.getuint64(); return true; } // ppcoin: total coin age spent in block, in the unit of coin-days. bool CBlock::GetCoinAge(uint64_t& nCoinAge) const { nCoinAge = 0; CTxDB txdb("r"); BOOST_FOREACH(const CTransaction& tx, vtx) { uint64_t nTxCoinAge; if (tx.GetCoinAge(txdb, nTxCoinAge)) nCoinAge += nTxCoinAge; else return false; } if (nCoinAge == 0) // block coin age minimum 1 coin-day nCoinAge = 1; if (fDebug && GetBoolArg("-printcoinage")) printf("block coin age total nCoinDays=%" PRId64 "\n", nCoinAge); return true; } bool CBlock::AddToBlockIndex(unsigned int nFile, unsigned int nBlockPos) { // Check for duplicate uint256 hash = GetHash(); if (mapBlockIndex.count(hash)) return error("AddToBlockIndex() : %s already exists", hash.ToString().substr(0,20).c_str()); // Construct new block index object CBlockIndex* pindexNew = new(nothrow) CBlockIndex(nFile, nBlockPos, *this); if (!pindexNew) return error("AddToBlockIndex() : new CBlockIndex failed"); pindexNew->phashBlock = &hash; map::iterator miPrev = mapBlockIndex.find(hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; } // ppcoin: compute chain trust score pindexNew->nChainTrust = (pindexNew->pprev ? pindexNew->pprev->nChainTrust : 0) + pindexNew->GetBlockTrust(); // ppcoin: compute stake entropy bit for stake modifier if (!pindexNew->SetStakeEntropyBit(GetStakeEntropyBit(pindexNew->nHeight))) return error("AddToBlockIndex() : SetStakeEntropyBit() failed"); // ppcoin: record proof-of-stake hash value if (pindexNew->IsProofOfStake()) { if (!mapProofOfStake.count(hash)) return error("AddToBlockIndex() : hashProofOfStake not found in map"); pindexNew->hashProofOfStake = mapProofOfStake[hash]; } // ppcoin: compute stake modifier uint64_t nStakeModifier = 0; bool fGeneratedStakeModifier = false; if (!ComputeNextStakeModifier(pindexNew, nStakeModifier, fGeneratedStakeModifier)) return error("AddToBlockIndex() : ComputeNextStakeModifier() failed"); pindexNew->SetStakeModifier(nStakeModifier, fGeneratedStakeModifier); pindexNew->nStakeModifierChecksum = GetStakeModifierChecksum(pindexNew); if (!CheckStakeModifierCheckpoints(pindexNew->nHeight, pindexNew->nStakeModifierChecksum)) return error("AddToBlockIndex() : Rejected by stake modifier checkpoint height=%d, modifier=0x%016" PRIx64, pindexNew->nHeight, nStakeModifier); // Add to mapBlockIndex map::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first; if (pindexNew->IsProofOfStake()) setStakeSeen.insert(make_pair(pindexNew->prevoutStake, pindexNew->nStakeTime)); pindexNew->phashBlock = &((*mi).first); // Write to disk block index CTxDB txdb; if (!txdb.TxnBegin()) return false; txdb.WriteBlockIndex(CDiskBlockIndex(pindexNew)); if (!txdb.TxnCommit()) return false; // New best if (pindexNew->nChainTrust > nBestChainTrust) if (!SetBestChain(txdb, pindexNew)) return false; if (pindexNew == pindexBest) { // Notify UI to display prev block's coinbase if it was ours static uint256 hashPrevBestCoinBase; UpdatedTransaction(hashPrevBestCoinBase); hashPrevBestCoinBase = vtx[0].GetHash(); } static int8_t counter = 0; if( (++counter & 0x0F) == 0 || !IsInitialBlockDownload()) // repaint every 16 blocks if not in initial block download uiInterface.NotifyBlocksChanged(); return true; } bool CBlock::CheckBlock(bool fCheckPOW, bool fCheckMerkleRoot, bool fCheckSig) const { // These are checks that are independent of context // that can be verified before saving an orphan block. set uniqueTx; // tx hashes unsigned int nSigOps = 0; // total sigops // Size limits if (vtx.empty() || vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE) return DoS(100, error("CheckBlock() : size limits failed")); bool fProofOfStake = IsProofOfStake(); // First transaction must be coinbase, the rest must not be if (!vtx[0].IsCoinBase()) return DoS(100, error("CheckBlock() : first tx is not coinbase")); if (!vtx[0].CheckTransaction()) return DoS(vtx[0].nDoS, error("CheckBlock() : CheckTransaction failed on coinbase")); uniqueTx.insert(vtx[0].GetHash()); nSigOps += vtx[0].GetLegacySigOpCount(); if (fProofOfStake) { // Proof-of-STake related checkings. Note that we know here that 1st transactions is coinstake. We don't need // check the type of 1st transaction because it's performed earlier by IsProofOfStake() // nNonce must be zero for proof-of-stake blocks if (nNonce != 0) return DoS(100, error("CheckBlock() : non-zero nonce in proof-of-stake block")); // Coinbase output should be empty if proof-of-stake block if (vtx[0].vout.size() != 1 || !vtx[0].vout[0].IsEmpty()) return DoS(100, error("CheckBlock() : coinbase output not empty for proof-of-stake block")); // Check coinstake timestamp if (GetBlockTime() != (int64_t)vtx[1].nTime) return DoS(50, error("CheckBlock() : coinstake timestamp violation nTimeBlock=%" PRId64 " nTimeTx=%u", GetBlockTime(), vtx[1].nTime)); // NovaCoin: check proof-of-stake block signature if (fCheckSig && !CheckBlockSignature()) return DoS(100, error("CheckBlock() : bad proof-of-stake block signature")); if (!vtx[1].CheckTransaction()) return DoS(vtx[1].nDoS, error("CheckBlock() : CheckTransaction failed on coinstake")); uniqueTx.insert(vtx[1].GetHash()); nSigOps += vtx[1].GetLegacySigOpCount(); } else { // Check proof of work matches claimed amount if (fCheckPOW && !CheckProofOfWork(GetHash(), nBits)) return DoS(50, error("CheckBlock() : proof of work failed")); // Check timestamp if (GetBlockTime() > FutureDrift(GetAdjustedTime())) return error("CheckBlock() : block timestamp too far in the future"); // Check coinbase timestamp if (GetBlockTime() < PastDrift((int64_t)vtx[0].nTime)) return DoS(50, error("CheckBlock() : coinbase timestamp is too late")); } // Iterate all transactions starting from second for proof-of-stake block // or first for proof-of-work block for (unsigned int i = fProofOfStake ? 2 : 1; i < vtx.size(); i++) { const CTransaction& tx = vtx[i]; // Reject coinbase transactions at non-zero index if (tx.IsCoinBase()) return DoS(100, error("CheckBlock() : coinbase at wrong index")); // Reject coinstake transactions at index != 1 if (tx.IsCoinStake()) return DoS(100, error("CheckBlock() : coinstake at wrong index")); // Check transaction timestamp if (GetBlockTime() < (int64_t)tx.nTime) return DoS(50, error("CheckBlock() : block timestamp earlier than transaction timestamp")); // Check transaction consistency if (!tx.CheckTransaction()) return DoS(tx.nDoS, error("CheckBlock() : CheckTransaction failed")); // Add transaction hash into list of unique transaction IDs uniqueTx.insert(tx.GetHash()); // Calculate sigops count nSigOps += tx.GetLegacySigOpCount(); } // Check for duplicate txids. This is caught by ConnectInputs(), // but catching it earlier avoids a potential DoS attack: if (uniqueTx.size() != vtx.size()) return DoS(100, error("CheckBlock() : duplicate transaction")); // Reject block if validation would consume too much resources. if (nSigOps > MAX_BLOCK_SIGOPS) return DoS(100, error("CheckBlock() : out-of-bounds SigOpCount")); // Check merkle root if (fCheckMerkleRoot && hashMerkleRoot != BuildMerkleTree()) return DoS(100, error("CheckBlock() : hashMerkleRoot mismatch")); return true; } bool CBlock::AcceptBlock() { // Check for duplicate uint256 hash = GetHash(); if (mapBlockIndex.count(hash)) return error("AcceptBlock() : block already in mapBlockIndex"); // Get prev block index map::iterator mi = mapBlockIndex.find(hashPrevBlock); if (mi == mapBlockIndex.end()) return DoS(10, error("AcceptBlock() : prev block not found")); CBlockIndex* pindexPrev = (*mi).second; int nHeight = pindexPrev->nHeight+1; // Check proof-of-work or proof-of-stake if (nBits != GetNextTargetRequired(pindexPrev, IsProofOfStake())) return DoS(100, error("AcceptBlock() : incorrect %s", IsProofOfWork() ? "proof-of-work" : "proof-of-stake")); int64_t nMedianTimePast = pindexPrev->GetMedianTimePast(); int nMaxOffset = 12 * nOneHour; // 12 hours if (fTestNet || pindexPrev->nTime < 1450569600) nMaxOffset = 7 * nOneWeek; // One week (permanently on testNet or until 20 Dec, 2015 on mainNet) // Check timestamp against prev if (GetBlockTime() <= nMedianTimePast || FutureDrift(GetBlockTime()) < pindexPrev->GetBlockTime()) return error("AcceptBlock() : block's timestamp is too early"); // Don't accept blocks with future timestamps if (pindexPrev->nHeight > 1 && nMedianTimePast + nMaxOffset < GetBlockTime()) return error("AcceptBlock() : block's timestamp is too far in the future"); // Check that all transactions are finalized BOOST_FOREACH(const CTransaction& tx, vtx) if (!tx.IsFinal(nHeight, GetBlockTime())) return DoS(10, error("AcceptBlock() : contains a non-final transaction")); // Check that the block chain matches the known block chain up to a checkpoint if (!Checkpoints::CheckHardened(nHeight, hash)) return DoS(100, error("AcceptBlock() : rejected by hardened checkpoint lock-in at %d", nHeight)); bool cpSatisfies = Checkpoints::CheckSync(hash, pindexPrev); // Check that the block satisfies synchronized checkpoint if (CheckpointsMode == Checkpoints::STRICT && !cpSatisfies) return error("AcceptBlock() : rejected by synchronized checkpoint"); if (CheckpointsMode == Checkpoints::ADVISORY && !cpSatisfies) strMiscWarning = _("WARNING: syncronized checkpoint violation detected, but skipped!"); // Enforce rule that the coinbase starts with serialized block height CScript expect = CScript() << nHeight; if (vtx[0].vin[0].scriptSig.size() < expect.size() || !std::equal(expect.begin(), expect.end(), vtx[0].vin[0].scriptSig.begin())) return DoS(100, error("AcceptBlock() : block height mismatch in coinbase")); // Write block to history file if (!CheckDiskSpace(::GetSerializeSize(*this, SER_DISK, CLIENT_VERSION))) return error("AcceptBlock() : out of disk space"); unsigned int nFile = std::numeric_limits::max(); unsigned int nBlockPos = 0; if (!WriteToDisk(nFile, nBlockPos)) return error("AcceptBlock() : WriteToDisk failed"); if (!AddToBlockIndex(nFile, nBlockPos)) return error("AcceptBlock() : AddToBlockIndex failed"); // Relay inventory, but don't relay old inventory during initial block download int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate(); if (hashBestChain == hash) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate)) pnode->PushInventory(CInv(MSG_BLOCK, hash)); } // ppcoin: check pending sync-checkpoint Checkpoints::AcceptPendingSyncCheckpoint(); return true; } uint256 CBlockIndex::GetBlockTrust() const { CBigNum bnTarget; bnTarget.SetCompact(nBits); if (bnTarget <= 0) return 0; // Return 1 for the first 12 blocks if (pprev == NULL || pprev->nHeight < 12) return 1; const CBlockIndex* currentIndex = pprev; if(IsProofOfStake()) { CBigNum bnNewTrust = (CBigNum(1)<<256) / (bnTarget+1); // Return 1/3 of score if parent block is not the PoW block if (!pprev->IsProofOfWork()) return (bnNewTrust / 3).getuint256(); int nPoWCount = 0; // Check last 12 blocks type while (pprev->nHeight - currentIndex->nHeight < 12) { if (currentIndex->IsProofOfWork()) nPoWCount++; currentIndex = currentIndex->pprev; } // Return 1/3 of score if less than 3 PoW blocks found if (nPoWCount < 3) return (bnNewTrust / 3).getuint256(); return bnNewTrust.getuint256(); } else { // Calculate work amount for block CBigNum bnPoWTrust = CBigNum(nPoWBase) / (bnTarget+1); // Set nPowTrust to 1 if PoW difficulty is too low if (bnPoWTrust < 1) bnPoWTrust = 1; CBigNum bnLastBlockTrust = CBigNum(pprev->nChainTrust - pprev->pprev->nChainTrust); // Return nPoWTrust + 2/3 of previous block score if two parent blocks are not PoS blocks if (!(pprev->IsProofOfStake() && pprev->pprev->IsProofOfStake())) return (bnPoWTrust + 2 * bnLastBlockTrust / 3).getuint256(); int nPoSCount = 0; // Check last 12 blocks type while (pprev->nHeight - currentIndex->nHeight < 12) { if (currentIndex->IsProofOfStake()) nPoSCount++; currentIndex = currentIndex->pprev; } // Return nPoWTrust + 2/3 of previous block score if less than 7 PoS blocks found if (nPoSCount < 7) return (bnPoWTrust + 2 * bnLastBlockTrust / 3).getuint256(); bnTarget.SetCompact(pprev->nBits); if (bnTarget <= 0) return 0; CBigNum bnNewTrust = (CBigNum(1)<<256) / (bnTarget+1); // Return nPoWTrust + full trust score for previous block nBits return (bnPoWTrust + bnNewTrust).getuint256(); } } bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck) { unsigned int nFound = 0; for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++) { if (pstart->nVersion >= minVersion) ++nFound; pstart = pstart->pprev; } return (nFound >= nRequired); } bool static ReserealizeBlockSignature(CBlock* pblock) { if (pblock->IsProofOfWork()) { pblock->vchBlockSig.clear(); return true; } return CPubKey::ReserealizeSignature(pblock->vchBlockSig); } bool static IsCanonicalBlockSignature(CBlock* pblock) { if (pblock->IsProofOfWork()) return pblock->vchBlockSig.empty(); return IsDERSignature(pblock->vchBlockSig); } bool ProcessBlock(CNode* pfrom, CBlock* pblock) { // Check for duplicate uint256 hash = pblock->GetHash(); if (mapBlockIndex.count(hash)) return error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString().substr(0,20).c_str()); if (mapOrphanBlocks.count(hash)) return error("ProcessBlock() : already have block (orphan) %s", hash.ToString().substr(0,20).c_str()); // Check that block isn't listed as unconditionally banned. if (!Checkpoints::CheckBanned(hash)) { if (pfrom) pfrom->Misbehaving(100); return error("ProcessBlock() : block %s is rejected by hard-coded banlist", hash.GetHex().substr(0,20).c_str()); } // Check proof-of-stake // Limited duplicity on stake: prevents block flood attack // Duplicate stake allowed only when there is orphan child block if (pblock->IsProofOfStake() && setStakeSeen.count(pblock->GetProofOfStake()) && !mapOrphanBlocksByPrev.count(hash) && !Checkpoints::WantedByPendingSyncCheckpoint(hash)) return error("ProcessBlock() : duplicate proof-of-stake (%s, %d) for block %s", pblock->GetProofOfStake().first.ToString().c_str(), pblock->GetProofOfStake().second, hash.ToString().c_str()); // Strip the garbage from newly received blocks, if we found some if (!IsCanonicalBlockSignature(pblock)) { if (!ReserealizeBlockSignature(pblock)) printf("WARNING: ProcessBlock() : ReserealizeBlockSignature FAILED\n"); } // Preliminary checks if (!pblock->CheckBlock(true, true, (pblock->nTime > Checkpoints::GetLastCheckpointTime()))) return error("ProcessBlock() : CheckBlock FAILED"); // ppcoin: verify hash target and signature of coinstake tx if (pblock->IsProofOfStake()) { uint256 hashProofOfStake = 0, targetProofOfStake = 0; if (!CheckProofOfStake(pblock->vtx[1], pblock->nBits, hashProofOfStake, targetProofOfStake)) { printf("WARNING: ProcessBlock(): check proof-of-stake failed for block %s\n", hash.ToString().c_str()); return false; // do not error here as we expect this during initial block download } if (!mapProofOfStake.count(hash)) // add to mapProofOfStake mapProofOfStake.insert(make_pair(hash, hashProofOfStake)); } CBlockIndex* pcheckpoint = Checkpoints::GetLastSyncCheckpoint(); if (pcheckpoint && pblock->hashPrevBlock != hashBestChain && !Checkpoints::WantedByPendingSyncCheckpoint(hash)) { // Extra checks to prevent "fill up memory by spamming with bogus blocks" int64_t deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime; CBigNum bnNewBlock; bnNewBlock.SetCompact(pblock->nBits); CBigNum bnRequired; if (pblock->IsProofOfStake()) bnRequired.SetCompact(ComputeMinStake(GetLastBlockIndex(pcheckpoint, true)->nBits, deltaTime, pblock->nTime)); else bnRequired.SetCompact(ComputeMinWork(GetLastBlockIndex(pcheckpoint, false)->nBits, deltaTime)); if (bnNewBlock > bnRequired) { if (pfrom) pfrom->Misbehaving(100); return error("ProcessBlock() : block with too little %s", pblock->IsProofOfStake()? "proof-of-stake" : "proof-of-work"); } } // ppcoin: ask for pending sync-checkpoint if any if (!IsInitialBlockDownload()) Checkpoints::AskForPendingSyncCheckpoint(pfrom); // If don't already have its previous block, shunt it off to holding area until we get it if (!mapBlockIndex.count(pblock->hashPrevBlock)) { printf("ProcessBlock: ORPHAN BLOCK, prev=%s\n", pblock->hashPrevBlock.ToString().substr(0,20).c_str()); // ppcoin: check proof-of-stake if (pblock->IsProofOfStake()) { // Limited duplicity on stake: prevents block flood attack // Duplicate stake allowed only when there is orphan child block if (setStakeSeenOrphan.count(pblock->GetProofOfStake()) && !mapOrphanBlocksByPrev.count(hash) && !Checkpoints::WantedByPendingSyncCheckpoint(hash)) return error("ProcessBlock() : duplicate proof-of-stake (%s, %d) for orphan block %s", pblock->GetProofOfStake().first.ToString().c_str(), pblock->GetProofOfStake().second, hash.ToString().c_str()); else setStakeSeenOrphan.insert(pblock->GetProofOfStake()); } CBlock* pblock2 = new CBlock(*pblock); mapOrphanBlocks.insert(make_pair(hash, pblock2)); mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrevBlock, pblock2)); // Ask this guy to fill in what we're missing if (pfrom) { pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(pblock2)); // ppcoin: getblocks may not obtain the ancestor block rejected // earlier by duplicate-stake check so we ask for it again directly if (!IsInitialBlockDownload()) pfrom->AskFor(CInv(MSG_BLOCK, WantedByOrphan(pblock2))); } return true; } // Store to disk if (!pblock->AcceptBlock()) return error("ProcessBlock() : AcceptBlock FAILED"); // Recursively process any orphan blocks that depended on this one vector vWorkQueue; vWorkQueue.push_back(hash); for (unsigned int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (multimap::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev); mi != mapOrphanBlocksByPrev.upper_bound(hashPrev); ++mi) { CBlock* pblockOrphan = (*mi).second; if (pblockOrphan->AcceptBlock()) vWorkQueue.push_back(pblockOrphan->GetHash()); mapOrphanBlocks.erase(pblockOrphan->GetHash()); setStakeSeenOrphan.erase(pblockOrphan->GetProofOfStake()); delete pblockOrphan; } mapOrphanBlocksByPrev.erase(hashPrev); } printf("ProcessBlock: ACCEPTED\n"); // ppcoin: if responsible for sync-checkpoint send it if (pfrom && !CSyncCheckpoint::strMasterPrivKey.empty()) Checkpoints::SendSyncCheckpoint(Checkpoints::AutoSelectSyncCheckpoint()); return true; } // ppcoin: check block signature bool CBlock::CheckBlockSignature() const { if (vchBlockSig.empty()) return false; txnouttype whichType; vector vSolutions; if (!Solver(vtx[1].vout[1].scriptPubKey, whichType, vSolutions)) return false; if (whichType == TX_PUBKEY) { valtype& vchPubKey = vSolutions[0]; CPubKey key(vchPubKey); if (!key.IsValid()) return false; return key.Verify(GetHash(), vchBlockSig); } return false; } bool CheckDiskSpace(uint64_t nAdditionalBytes) { uint64_t nFreeBytesAvailable = filesystem::space(GetDataDir()).available; // Check for nMinDiskSpace bytes (currently 50MB) if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes) { fShutdown = true; string strMessage = _("Warning: Disk space is low!"); strMiscWarning = strMessage; printf("*** %s\n", strMessage.c_str()); uiInterface.ThreadSafeMessageBox(strMessage, "NovaCoin", CClientUIInterface::OK | CClientUIInterface::ICON_EXCLAMATION | CClientUIInterface::MODAL); StartShutdown(); return false; } return true; } static filesystem::path BlockFilePath(unsigned int nFile) { string strBlockFn = strprintf("blk%04u.dat", nFile); return GetDataDir() / strBlockFn; } FILE* OpenBlockFile(unsigned int nFile, unsigned int nBlockPos, const char* pszMode) { if ((nFile < 1) || (nFile == std::numeric_limits::max())) return NULL; FILE* file = fopen(BlockFilePath(nFile).string().c_str(), pszMode); if (!file) return NULL; if (nBlockPos != 0 && !strchr(pszMode, 'a') && !strchr(pszMode, 'w')) { if (fseek(file, nBlockPos, SEEK_SET) != 0) { fclose(file); return NULL; } } return file; } static unsigned int nCurrentBlockFile = 1; FILE* AppendBlockFile(unsigned int& nFileRet) { nFileRet = 0; for ( ; ; ) { FILE* file = OpenBlockFile(nCurrentBlockFile, 0, "ab"); if (!file) return NULL; if (fseek(file, 0, SEEK_END) != 0) return NULL; // FAT32 file size max 4GB, fseek and ftell max 2GB, so we must stay under 2GB if (ftell(file) < (long)(0x7F000000 - MAX_SIZE)) { nFileRet = nCurrentBlockFile; return file; } fclose(file); nCurrentBlockFile++; } } void UnloadBlockIndex() { mapBlockIndex.clear(); setStakeSeen.clear(); pindexGenesisBlock = NULL; nBestHeight = 0; nBestChainTrust = 0; nBestInvalidTrust = 0; hashBestChain = 0; pindexBest = NULL; } bool LoadBlockIndex(bool fAllowNew) { if (fTestNet) { pchMessageStart[0] = 0xcd; pchMessageStart[1] = 0xf2; pchMessageStart[2] = 0xc0; pchMessageStart[3] = 0xef; bnProofOfWorkLimit = bnProofOfWorkLimitTestNet; // 16 bits PoW target limit for testnet nStakeMinAge = 2 * nOneHour; // test net min age is 2 hours nModifierInterval = 20 * 60; // test modifier interval is 20 minutes nCoinbaseMaturity = 10; // test maturity is 10 blocks nStakeTargetSpacing = 5 * 60; // test block spacing is 5 minutes } // // Load block index // CTxDB txdb("cr+"); if (!txdb.LoadBlockIndex()) return false; // // Init with genesis block // if (mapBlockIndex.empty()) { if (!fAllowNew) return false; // Genesis block // MainNet: //CBlock(hash=00000a060336cbb72fe969666d337b87198b1add2abaa59cca226820b32933a4, ver=1, hashPrevBlock=0000000000000000000000000000000000000000000000000000000000000000, hashMerkleRoot=4cb33b3b6a861dcbc685d3e614a9cafb945738d6833f182855679f2fad02057b, nTime=1360105017, nBits=1e0fffff, nNonce=1575379, vtx=1, vchBlockSig=) // Coinbase(hash=4cb33b3b6a, nTime=1360105017, ver=1, vin.size=1, vout.size=1, nLockTime=0) // CTxIn(COutPoint(0000000000, 4294967295), coinbase 04ffff001d020f274468747470733a2f2f626974636f696e74616c6b2e6f72672f696e6465782e7068703f746f7069633d3133343137392e6d736731353032313936236d736731353032313936) // CTxOut(empty) // vMerkleTree: 4cb33b3b6a // TestNet: //CBlock(hash=0000c763e402f2436da9ed36c7286f62c3f6e5dbafce9ff289bd43d7459327eb, ver=1, hashPrevBlock=0000000000000000000000000000000000000000000000000000000000000000, hashMerkleRoot=4cb33b3b6a861dcbc685d3e614a9cafb945738d6833f182855679f2fad02057b, nTime=1360105017, nBits=1f00ffff, nNonce=46534, vtx=1, vchBlockSig=) // Coinbase(hash=4cb33b3b6a, nTime=1360105017, ver=1, vin.size=1, vout.size=1, nLockTime=0) // CTxIn(COutPoint(0000000000, 4294967295), coinbase 04ffff001d020f274468747470733a2f2f626974636f696e74616c6b2e6f72672f696e6465782e7068703f746f7069633d3133343137392e6d736731353032313936236d736731353032313936) // CTxOut(empty) // vMerkleTree: 4cb33b3b6a const char* pszTimestamp = "https://bitcointalk.org/index.php?topic=134179.msg1502196#msg1502196"; CTransaction txNew; txNew.nTime = 1360105017; txNew.vin.resize(1); txNew.vout.resize(1); txNew.vin[0].scriptSig = CScript() << 486604799 << CBigNum(9999) << vector((const unsigned char*)pszTimestamp, (const unsigned char*)pszTimestamp + strlen(pszTimestamp)); txNew.vout[0].SetEmpty(); CBlock block; block.vtx.push_back(txNew); block.hashPrevBlock = 0; block.hashMerkleRoot = block.BuildMerkleTree(); block.nVersion = 1; block.nTime = 1360105017; block.nBits = bnProofOfWorkLimit.GetCompact(); block.nNonce = !fTestNet ? 1575379 : 46534; //// debug print assert(block.hashMerkleRoot == uint256("0x4cb33b3b6a861dcbc685d3e614a9cafb945738d6833f182855679f2fad02057b")); block.print(); assert(block.GetHash() == (!fTestNet ? hashGenesisBlock : hashGenesisBlockTestNet)); assert(block.CheckBlock()); // Start new block file unsigned int nFile; unsigned int nBlockPos; if (!block.WriteToDisk(nFile, nBlockPos)) return error("LoadBlockIndex() : writing genesis block to disk failed"); if (!block.AddToBlockIndex(nFile, nBlockPos)) return error("LoadBlockIndex() : genesis block not accepted"); // initialize synchronized checkpoint if (!Checkpoints::WriteSyncCheckpoint((!fTestNet ? hashGenesisBlock : hashGenesisBlockTestNet))) return error("LoadBlockIndex() : failed to init sync checkpoint"); // upgrade time set to zero if txdb initialized { if (!txdb.WriteModifierUpgradeTime(0)) return error("LoadBlockIndex() : failed to init upgrade info"); printf(" Upgrade Info: ModifierUpgradeTime txdb initialization\n"); } } { CTxDB txdb("r+"); string strPubKey = ""; if (!txdb.ReadCheckpointPubKey(strPubKey) || strPubKey != CSyncCheckpoint::strMasterPubKey) { // write checkpoint master key to db txdb.TxnBegin(); if (!txdb.WriteCheckpointPubKey(CSyncCheckpoint::strMasterPubKey)) return error("LoadBlockIndex() : failed to write new checkpoint master key to db"); if (!txdb.TxnCommit()) return error("LoadBlockIndex() : failed to commit new checkpoint master key to db"); if ((!fTestNet) && !Checkpoints::ResetSyncCheckpoint()) return error("LoadBlockIndex() : failed to reset sync-checkpoint"); } // upgrade time set to zero if blocktreedb initialized if (txdb.ReadModifierUpgradeTime(nModifierUpgradeTime)) { if (nModifierUpgradeTime) printf(" Upgrade Info: blocktreedb upgrade detected at timestamp %d\n", nModifierUpgradeTime); else printf(" Upgrade Info: no blocktreedb upgrade detected.\n"); } else { nModifierUpgradeTime = GetTime(); printf(" Upgrade Info: upgrading blocktreedb at timestamp %u\n", nModifierUpgradeTime); if (!txdb.WriteModifierUpgradeTime(nModifierUpgradeTime)) return error("LoadBlockIndex() : failed to write upgrade info"); } #ifndef USE_LEVELDB txdb.Close(); #endif } return true; } void PrintBlockTree() { // pre-compute tree structure map > mapNext; for (map::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi) { CBlockIndex* pindex = (*mi).second; mapNext[pindex->pprev].push_back(pindex); // test //while (rand() % 3 == 0) // mapNext[pindex->pprev].push_back(pindex); } vector > vStack; vStack.push_back(make_pair(0, pindexGenesisBlock)); int nPrevCol = 0; while (!vStack.empty()) { int nCol = vStack.back().first; CBlockIndex* pindex = vStack.back().second; vStack.pop_back(); // print split or gap if (nCol > nPrevCol) { for (int i = 0; i < nCol-1; i++) printf("| "); printf("|\\\n"); } else if (nCol < nPrevCol) { for (int i = 0; i < nCol; i++) printf("| "); printf("|\n"); } nPrevCol = nCol; // print columns for (int i = 0; i < nCol; i++) printf("| "); // print item CBlock block; block.ReadFromDisk(pindex); printf("%d (%u,%u) %s %08x %s mint %7s tx %" PRIszu "", pindex->nHeight, pindex->nFile, pindex->nBlockPos, block.GetHash().ToString().c_str(), block.nBits, DateTimeStrFormat("%x %H:%M:%S", block.GetBlockTime()).c_str(), FormatMoney(pindex->nMint).c_str(), block.vtx.size()); PrintWallets(block); // put the main time-chain first vector& vNext = mapNext[pindex]; for (unsigned int i = 0; i < vNext.size(); i++) { if (vNext[i]->pnext) { swap(vNext[0], vNext[i]); break; } } // iterate children for (unsigned int i = 0; i < vNext.size(); i++) vStack.push_back(make_pair(nCol+i, vNext[i])); } } bool LoadExternalBlockFile(FILE* fileIn) { int64_t nStart = GetTimeMillis(); int nLoaded = 0; { LOCK(cs_main); try { CAutoFile blkdat(fileIn, SER_DISK, CLIENT_VERSION); unsigned int nPos = 0; while (nPos != std::numeric_limits::max() && blkdat.good() && !fRequestShutdown) { unsigned char pchData[65536]; do { fseek(blkdat, nPos, SEEK_SET); size_t nRead = fread(pchData, 1, sizeof(pchData), blkdat); if (nRead <= 8) { nPos = std::numeric_limits::max(); break; } void* nFind = memchr(pchData, pchMessageStart[0], nRead+1-sizeof(pchMessageStart)); if (nFind) { if (memcmp(nFind, pchMessageStart, sizeof(pchMessageStart))==0) { nPos += ((unsigned char*)nFind - pchData) + sizeof(pchMessageStart); break; } nPos += ((unsigned char*)nFind - pchData) + 1; } else nPos += sizeof(pchData) - sizeof(pchMessageStart) + 1; } while(!fRequestShutdown); if (nPos == std::numeric_limits::max()) break; fseek(blkdat, nPos, SEEK_SET); unsigned int nSize; blkdat >> nSize; if (nSize > 0 && nSize <= MAX_BLOCK_SIZE) { CBlock block; blkdat >> block; if (ProcessBlock(NULL,&block)) { nLoaded++; nPos += 4 + nSize; } } } } catch (const std::exception&) { printf("%s() : Deserialize or I/O error caught during load\n", BOOST_CURRENT_FUNCTION); } } printf("Loaded %i blocks from external file in %" PRId64 "ms\n", nLoaded, GetTimeMillis() - nStart); return nLoaded > 0; } ////////////////////////////////////////////////////////////////////////////// // // CAlert // extern map mapAlerts; extern CCriticalSection cs_mapAlerts; string GetWarnings(string strFor) { int nPriority = 0; string strStatusBar; string strRPC; if (GetBoolArg("-testsafemode")) strRPC = "test"; // Misc warnings like out of disk space and clock is wrong if (!strMiscWarning.empty()) { nPriority = 1000; strStatusBar = strMiscWarning; } // if detected unmet upgrade requirement enter safe mode // Note: Modifier upgrade requires blockchain redownload if past protocol switch if (IsFixedModifierInterval(nModifierUpgradeTime + nOneDay)) // 1 day margin { nPriority = 5000; strStatusBar = strRPC = "WARNING: Blockchain redownload required approaching or past v.0.4.4.6u4 upgrade deadline."; } // if detected invalid checkpoint enter safe mode if (Checkpoints::hashInvalidCheckpoint != 0) { nPriority = 3000; strStatusBar = strRPC = _("WARNING: Invalid checkpoint found! Displayed transactions may not be correct! You may need to upgrade, or notify developers."); } // Alerts { LOCK(cs_mapAlerts); BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) { const CAlert& alert = item.second; if (alert.AppliesToMe() && alert.nPriority > nPriority) { nPriority = alert.nPriority; strStatusBar = alert.strStatusBar; if (nPriority > 1000) strRPC = strStatusBar; } } } if (strFor == "statusbar") return strStatusBar; else if (strFor == "rpc") return strRPC; assert(!"GetWarnings() : invalid parameter"); return "error"; } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool static AlreadyHave(CTxDB& txdb, const CInv& inv) { switch (inv.type) { case MSG_TX: { bool txInMap = false; { LOCK(mempool.cs); txInMap = (mempool.exists(inv.hash)); } return txInMap || mapOrphanTransactions.count(inv.hash) || txdb.ContainsTx(inv.hash); } case MSG_BLOCK: return mapBlockIndex.count(inv.hash) || mapOrphanBlocks.count(inv.hash); } // Don't know what it is, just say we already got one return true; } // The message start string is designed to be unlikely to occur in normal data. // The characters are rarely used upper ASCII, not valid as UTF-8, and produce // a large 4-byte int at any alignment. unsigned char pchMessageStart[4] = { 0xe4, 0xe8, 0xe9, 0xe5 }; bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv) { static map mapReuseKey; RandAddSeedPerfmon(); if (fDebug) printf("received: %s (%" PRIszu " bytes)\n", strCommand.c_str(), vRecv.size()); if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0) { printf("dropmessagestest DROPPING RECV MESSAGE\n"); return true; } if (strCommand == "version") { // Each connection can only send one version message if (pfrom->nVersion != 0) { pfrom->Misbehaving(1); return false; } int64_t nTime; CAddress addrMe; CAddress addrFrom; uint64_t nNonce = 1; vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe; if (pfrom->nVersion < MIN_PROTO_VERSION) { // Since February 20, 2012, the protocol is initiated at version 209, // and earlier versions are no longer supported printf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString().c_str(), pfrom->nVersion); pfrom->fDisconnect = true; return false; } if (pfrom->nVersion == 10300) pfrom->nVersion = 300; if (!vRecv.empty()) vRecv >> addrFrom >> nNonce; if (!vRecv.empty()) vRecv >> pfrom->strSubVer; if (!vRecv.empty()) vRecv >> pfrom->nStartingHeight; if (pfrom->fInbound && addrMe.IsRoutable()) { pfrom->addrLocal = addrMe; SeenLocal(addrMe); } // Disconnect if we connected to ourself if (nNonce == nLocalHostNonce && nNonce > 1) { printf("connected to self at %s, disconnecting\n", pfrom->addr.ToString().c_str()); pfrom->fDisconnect = true; return true; } if (pfrom->nVersion < 60010) { printf("partner %s using a buggy client %d, disconnecting\n", pfrom->addr.ToString().c_str(), pfrom->nVersion); pfrom->fDisconnect = true; return true; } // record my external IP reported by peer if (addrFrom.IsRoutable() && addrMe.IsRoutable()) addrSeenByPeer = addrMe; // Be shy and don't send version until we hear if (pfrom->fInbound) pfrom->PushVersion(); pfrom->fClient = !(pfrom->nServices & NODE_NETWORK); AddTimeData(pfrom->addr, nTime); // Change version pfrom->PushMessage("verack"); pfrom->vSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); if (!pfrom->fInbound) { // Advertise our address if (!fNoListen && !IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom->addr); if (addr.IsRoutable()) pfrom->PushAddress(addr); } // Get recent addresses if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000) { pfrom->PushMessage("getaddr"); pfrom->fGetAddr = true; } addrman.Good(pfrom->addr); } else { if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom) { addrman.Add(addrFrom, addrFrom); addrman.Good(addrFrom); } } // Ask the first connected node for block updates static int nAskedForBlocks = 0; if (!pfrom->fClient && !pfrom->fOneShot && (pfrom->nStartingHeight > (nBestHeight - 144)) && (pfrom->nVersion < NOBLKS_VERSION_START || pfrom->nVersion >= NOBLKS_VERSION_END) && (nAskedForBlocks < 1 || vNodes.size() <= 1)) { nAskedForBlocks++; pfrom->PushGetBlocks(pindexBest, uint256(0)); } // Relay alerts { LOCK(cs_mapAlerts); BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts) item.second.RelayTo(pfrom); } // Relay sync-checkpoint { LOCK(Checkpoints::cs_hashSyncCheckpoint); if (!Checkpoints::checkpointMessage.IsNull()) Checkpoints::checkpointMessage.RelayTo(pfrom); } pfrom->fSuccessfullyConnected = true; printf("receive version message: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString().c_str(), addrFrom.ToString().c_str(), pfrom->addr.ToString().c_str()); cPeerBlockCounts.input(pfrom->nStartingHeight); // ppcoin: ask for pending sync-checkpoint if any if (!IsInitialBlockDownload()) Checkpoints::AskForPendingSyncCheckpoint(pfrom); } else if (pfrom->nVersion == 0) { // Must have a version message before anything else pfrom->Misbehaving(1); return false; } else if (strCommand == "verack") { pfrom->vRecv.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION)); } else if (strCommand == "addr") { vector vAddr; vRecv >> vAddr; // Don't want addr from older versions unless seeding if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000) return true; if (vAddr.size() > 1000) { pfrom->Misbehaving(20); return error("message addr size() = %" PRIszu "", vAddr.size()); } // Store the new addresses vector vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; BOOST_FOREACH(CAddress& addr, vAddr) { if (fShutdown) return true; if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) addr.nTime = nNow - 5 * nOneDay; pfrom->AddAddressKnown(addr); bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes { LOCK(cs_vNodes); // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the setAddrKnowns of the chosen nodes prevent repeats static uint256 hashSalt; if (hashSalt == 0) hashSalt = GetRandHash(); uint64_t hashAddr = addr.GetHash(); uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/nOneDay); hashRand = Hash(BEGIN(hashRand), END(hashRand)); multimap mapMix; BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->nVersion < CADDR_TIME_VERSION) continue; unsigned int nPointer; memcpy(&nPointer, &pnode, sizeof(nPointer)); uint256 hashKey = hashRand ^ nPointer; hashKey = Hash(BEGIN(hashKey), END(hashKey)); mapMix.insert(make_pair(hashKey, pnode)); } int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s) for (multimap::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi) ((*mi).second)->PushAddress(addr); } } // Do not store addresses outside our network if (fReachable) vAddrOk.push_back(addr); } addrman.Add(vAddrOk, pfrom->addr, 2 * nOneHour); if (vAddr.size() < 1000) pfrom->fGetAddr = false; if (pfrom->fOneShot) pfrom->fDisconnect = true; } else if (strCommand == "inv") { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { pfrom->Misbehaving(20); return error("message inv size() = %" PRIszu "", vInv.size()); } // find last block in inv vector size_t nLastBlock = std::numeric_limits::max(); for (size_t nInv = 0; nInv < vInv.size(); nInv++) { if (vInv[vInv.size() - 1 - nInv].type == MSG_BLOCK) { nLastBlock = vInv.size() - 1 - nInv; break; } } CTxDB txdb("r"); for (size_t nInv = 0; nInv < vInv.size(); nInv++) { const CInv &inv = vInv[nInv]; if (fShutdown) return true; pfrom->AddInventoryKnown(inv); bool fAlreadyHave = AlreadyHave(txdb, inv); if (fDebug) printf(" got inventory: %s %s\n", inv.ToString().c_str(), fAlreadyHave ? "have" : "new"); if (!fAlreadyHave) pfrom->AskFor(inv); else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) { pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(mapOrphanBlocks[inv.hash])); } else if (nInv == nLastBlock) { // In case we are on a very long side-chain, it is possible that we already have // the last block in an inv bundle sent in response to getblocks. Try to detect // this situation and push another getblocks to continue. pfrom->PushGetBlocks(mapBlockIndex[inv.hash], uint256(0)); if (fDebug) printf("force request: %s\n", inv.ToString().c_str()); } // Track requests for our stuff Inventory(inv.hash); } } else if (strCommand == "getdata") { vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { pfrom->Misbehaving(20); return error("message getdata size() = %" PRIszu "", vInv.size()); } if (fDebugNet || (vInv.size() != 1)) printf("received getdata (%" PRIszu " invsz)\n", vInv.size()); BOOST_FOREACH(const CInv& inv, vInv) { if (fShutdown) return true; if (fDebugNet || (vInv.size() == 1)) printf("received getdata for: %s\n", inv.ToString().c_str()); if (inv.type == MSG_BLOCK) { // Send block from disk map::iterator mi = mapBlockIndex.find(inv.hash); if (mi != mapBlockIndex.end()) { CBlock block; block.ReadFromDisk((*mi).second); pfrom->PushMessage("block", block); // Trigger them to send a getblocks request for the next batch of inventory if (inv.hash == pfrom->hashContinue) { // ppcoin: send latest proof-of-work block to allow the // download node to accept as orphan (proof-of-stake // block might be rejected by stake connection check) vector vInv; vInv.push_back(CInv(MSG_BLOCK, GetLastBlockIndex(pindexBest, false)->GetBlockHash())); pfrom->PushMessage("inv", vInv); pfrom->hashContinue = 0; } } } else if (inv.IsKnownType()) { // Send stream from relay memory bool pushed = false; { LOCK(cs_mapRelay); map::iterator mi = mapRelay.find(inv); if (mi != mapRelay.end()) { pfrom->PushMessage(inv.GetCommand(), (*mi).second); pushed = true; } } if (!pushed && inv.type == MSG_TX) { LOCK(mempool.cs); if (mempool.exists(inv.hash)) { CTransaction tx = mempool.lookup(inv.hash); CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(1000); ss << tx; pfrom->PushMessage("tx", ss); } } } // Track requests for our stuff Inventory(inv.hash); } } else if (strCommand == "getblocks") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; // Find the last block the caller has in the main chain CBlockIndex* pindex = locator.GetBlockIndex(); // Send the rest of the chain if (pindex) pindex = pindex->pnext; int nLimit = 500; printf("getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str(), nLimit); for (; pindex; pindex = pindex->pnext) { if (pindex->GetBlockHash() == hashStop) { printf(" getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str()); // ppcoin: tell downloading node about the latest block if it's // without risk being rejected due to stake connection check if (hashStop != hashBestChain && pindex->GetBlockTime() + nStakeMinAge > pindexBest->GetBlockTime()) pfrom->PushInventory(CInv(MSG_BLOCK, hashBestChain)); break; } pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll make them // getblocks the next batch of inventory. printf(" getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str()); pfrom->hashContinue = pindex->GetBlockHash(); break; } } } else if (strCommand == "checkpoint") { CSyncCheckpoint checkpoint; vRecv >> checkpoint; if (checkpoint.ProcessSyncCheckpoint(pfrom)) { // Relay pfrom->hashCheckpointKnown = checkpoint.hashCheckpoint; LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) checkpoint.RelayTo(pnode); } } else if (strCommand == "getheaders") { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; CBlockIndex* pindex = NULL; if (locator.IsNull()) { // If locator is null, return the hashStop block map::iterator mi = mapBlockIndex.find(hashStop); if (mi == mapBlockIndex.end()) return true; pindex = (*mi).second; } else { // Find the last block the caller has in the main chain pindex = locator.GetBlockIndex(); if (pindex) pindex = pindex->pnext; } vector vHeaders; int nLimit = 2000; printf("getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str()); for (; pindex; pindex = pindex->pnext) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) break; } pfrom->PushMessage("headers", vHeaders); } else if (strCommand == "tx") { vector vWorkQueue; vector vEraseQueue; CDataStream vMsg(vRecv); CTxDB txdb("r"); CTransaction tx; vRecv >> tx; CInv inv(MSG_TX, tx.GetHash()); pfrom->AddInventoryKnown(inv); bool fMissingInputs = false; if (tx.AcceptToMemoryPool(txdb, true, &fMissingInputs)) { SyncWithWallets(tx, NULL, true); RelayTransaction(tx, inv.hash); mapAlreadyAskedFor.erase(inv); vWorkQueue.push_back(inv.hash); vEraseQueue.push_back(inv.hash); // Recursively process any orphan transactions that depended on this one for (unsigned int i = 0; i < vWorkQueue.size(); i++) { uint256 hashPrev = vWorkQueue[i]; for (set::iterator mi = mapOrphanTransactionsByPrev[hashPrev].begin(); mi != mapOrphanTransactionsByPrev[hashPrev].end(); ++mi) { const uint256& orphanTxHash = *mi; CTransaction& orphanTx = mapOrphanTransactions[orphanTxHash]; bool fMissingInputs2 = false; if (orphanTx.AcceptToMemoryPool(txdb, true, &fMissingInputs2)) { printf(" accepted orphan tx %s\n", orphanTxHash.ToString().substr(0,10).c_str()); SyncWithWallets(tx, NULL, true); RelayTransaction(orphanTx, orphanTxHash); mapAlreadyAskedFor.erase(CInv(MSG_TX, orphanTxHash)); vWorkQueue.push_back(orphanTxHash); vEraseQueue.push_back(orphanTxHash); } else if (!fMissingInputs2) { // invalid orphan vEraseQueue.push_back(orphanTxHash); printf(" removed invalid orphan tx %s\n", orphanTxHash.ToString().substr(0,10).c_str()); } } } BOOST_FOREACH(uint256 hash, vEraseQueue) EraseOrphanTx(hash); } else if (fMissingInputs) { AddOrphanTx(tx); // DoS prevention: do not allow mapOrphanTransactions to grow unbounded unsigned int nEvicted = LimitOrphanTxSize(MAX_ORPHAN_TRANSACTIONS); if (nEvicted > 0) printf("mapOrphan overflow, removed %u tx\n", nEvicted); } if (tx.nDoS) pfrom->Misbehaving(tx.nDoS); } else if (strCommand == "block") { CBlock block; vRecv >> block; uint256 hashBlock = block.GetHash(); printf("received block %s\n", hashBlock.ToString().substr(0,20).c_str()); // block.print(); CInv inv(MSG_BLOCK, hashBlock); pfrom->AddInventoryKnown(inv); if (ProcessBlock(pfrom, &block)) mapAlreadyAskedFor.erase(inv); if (block.nDoS) pfrom->Misbehaving(block.nDoS); } // This asymmetric behavior for inbound and outbound connections was introduced // to prevent a fingerprinting attack: an attacker can send specific fake addresses // to users' AddrMan and later request them by sending getaddr messages. // Making users (which are behind NAT and can only make outgoing connections) ignore // getaddr message mitigates the attack. else if ((strCommand == "getaddr") && (pfrom->fInbound)) { // Don't return addresses older than nCutOff timestamp int64_t nCutOff = GetTime() - (nNodeLifespan * nOneDay); pfrom->vAddrToSend.clear(); vector vAddr = addrman.GetAddr(); BOOST_FOREACH(const CAddress &addr, vAddr) if(addr.nTime > nCutOff) pfrom->PushAddress(addr); } else if (strCommand == "mempool") { std::vector vtxid; mempool.queryHashes(vtxid); vector vInv; for (unsigned int i = 0; i < vtxid.size(); i++) { CInv inv(MSG_TX, vtxid[i]); vInv.push_back(inv); if (i == (MAX_INV_SZ - 1)) break; } if (vInv.size() > 0) pfrom->PushMessage("inv", vInv); } else if (strCommand == "checkorder") { uint256 hashReply; vRecv >> hashReply; if (!GetBoolArg("-allowreceivebyip")) { pfrom->PushMessage("reply", hashReply, 2, string("")); return true; } CWalletTx order; vRecv >> order; /// we have a chance to check the order here // Keep giving the same key to the same ip until they use it if (!mapReuseKey.count(pfrom->addr)) pwalletMain->GetKeyFromPool(mapReuseKey[pfrom->addr], true); // Send back approval of order and pubkey to use CScript scriptPubKey; scriptPubKey << mapReuseKey[pfrom->addr] << OP_CHECKSIG; pfrom->PushMessage("reply", hashReply, 0, scriptPubKey); } else if (strCommand == "reply") { uint256 hashReply; vRecv >> hashReply; CRequestTracker tracker; { LOCK(pfrom->cs_mapRequests); map::iterator mi = pfrom->mapRequests.find(hashReply); if (mi != pfrom->mapRequests.end()) { tracker = (*mi).second; pfrom->mapRequests.erase(mi); } } if (!tracker.IsNull()) tracker.fn(tracker.param1, vRecv); } else if (strCommand == "ping") { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful features: // // 1) A remote node can quickly check if the connection is operational // 2) Remote nodes can measure the latency of the network thread. If this node // is overloaded it won't respond to pings quickly and the remote node can // avoid sending us more work, like chain download requests. // // The nonce stops the remote getting confused between different pings: without // it, if the remote node sends a ping once per second and this node takes 5 // seconds to respond to each, the 5th ping the remote sends would appear to // return very quickly. pfrom->PushMessage("pong", nonce); } else if (strCommand == "alert") { CAlert alert; vRecv >> alert; uint256 alertHash = alert.GetHash(); if (pfrom->setKnown.count(alertHash) == 0) { if (alert.ProcessAlert()) { // Relay pfrom->setKnown.insert(alertHash); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) alert.RelayTo(pnode); } } else { // Small DoS penalty so peers that send us lots of // duplicate/expired/invalid-signature/whatever alerts // eventually get banned. // This isn't a Misbehaving(100) (immediate ban) because the // peer might be an older or different implementation with // a different signature key, etc. pfrom->Misbehaving(10); } } } else { // Ignore unknown commands for extensibility } // Update the last seen time for this node's address if (pfrom->fNetworkNode) if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping") AddressCurrentlyConnected(pfrom->addr); return true; } bool ProcessMessages(CNode* pfrom) { CDataStream& vRecv = pfrom->vRecv; if (vRecv.empty()) return true; //if (fDebug) // printf("ProcessMessages(%u bytes)\n", vRecv.size()); // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // for ( ; ; ) { // Don't bother if send buffer is too full to respond anyway if (pfrom->vSend.size() >= SendBufferSize()) break; // Scan for message start CDataStream::iterator pstart = search(vRecv.begin(), vRecv.end(), BEGIN(pchMessageStart), END(pchMessageStart)); int nHeaderSize = vRecv.GetSerializeSize(CMessageHeader()); if (vRecv.end() - pstart < nHeaderSize) { if ((int)vRecv.size() > nHeaderSize) { printf("\n\nPROCESSMESSAGE MESSAGESTART NOT FOUND\n\n"); vRecv.erase(vRecv.begin(), vRecv.end() - nHeaderSize); } break; } if (pstart - vRecv.begin() > 0) printf("\n\nPROCESSMESSAGE SKIPPED %" PRIpdd " BYTES\n\n", pstart - vRecv.begin()); vRecv.erase(vRecv.begin(), pstart); // Read header vector vHeaderSave(vRecv.begin(), vRecv.begin() + nHeaderSize); CMessageHeader hdr; vRecv >> hdr; if (!hdr.IsValid()) { printf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand().c_str()); continue; } string strCommand = hdr.GetCommand(); // Message size unsigned int nMessageSize = hdr.nMessageSize; if (nMessageSize > MAX_SIZE) { printf("ProcessMessages(%s, %u bytes) : nMessageSize > MAX_SIZE\n", strCommand.c_str(), nMessageSize); continue; } if (nMessageSize > vRecv.size()) { // Rewind and wait for rest of message vRecv.insert(vRecv.begin(), vHeaderSave.begin(), vHeaderSave.end()); break; } // Checksum uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); if (nChecksum != hdr.nChecksum) { printf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n", strCommand.c_str(), nMessageSize, nChecksum, hdr.nChecksum); continue; } // Copy message to its own buffer CDataStream vMsg(vRecv.begin(), vRecv.begin() + nMessageSize, vRecv.nType, vRecv.nVersion); vRecv.ignore(nMessageSize); // Process message bool fRet = false; try { { LOCK(cs_main); fRet = ProcessMessage(pfrom, strCommand, vMsg); } if (fShutdown) return true; } catch (std::ios_base::failure& e) { if (strstr(e.what(), "end of data")) { // Allow exceptions from under-length message on vRecv printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught, normally caused by a message being shorter than its stated length\n", strCommand.c_str(), nMessageSize, e.what()); } else if (strstr(e.what(), "size too large")) { // Allow exceptions from over-long size printf("ProcessMessages(%s, %u bytes) : Exception '%s' caught\n", strCommand.c_str(), nMessageSize, e.what()); } else { PrintExceptionContinue(&e, "ProcessMessages()"); } } catch (std::exception& e) { PrintExceptionContinue(&e, "ProcessMessages()"); } catch (...) { PrintExceptionContinue(NULL, "ProcessMessages()"); } if (!fRet) printf("ProcessMessage(%s, %u bytes) FAILED\n", strCommand.c_str(), nMessageSize); } vRecv.Compact(); return true; } bool SendMessages(CNode* pto) { TRY_LOCK(cs_main, lockMain); if (lockMain) { // Current time in microseconds int64_t nNow = GetTimeMicros(); // Don't send anything until we get their version message if (pto->nVersion == 0) return true; // Keep-alive ping. We send a nonce of zero because we don't use it anywhere // right now. if (pto->nLastSend && GetTime() - pto->nLastSend > nPingInterval && pto->vSend.empty()) { uint64_t nonce = 0; pto->PushMessage("ping", nonce); } // Start block sync if (pto->fStartSync) { pto->fStartSync = false; pto->PushGetBlocks(pindexBest, uint256(0)); } // Resend wallet transactions that haven't gotten in a block yet ResendWalletTransactions(); // Address refresh broadcast if (!IsInitialBlockDownload() && pto->nNextLocalAddrSend < nNow) { AdvertiseLocal(pto); pto->nNextLocalAddrSend = PoissonNextSend(nNow, nOneDay); } // // Message: addr // if (pto->nNextAddrSend < nNow) { pto->nNextAddrSend = PoissonNextSend(nNow, 30); vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); BOOST_FOREACH(const CAddress& addr, pto->vAddrToSend) { if (pto->setAddrKnown.insert(addr).second) { vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { pto->PushMessage("addr", vAddr); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) pto->PushMessage("addr", vAddr); } // // Message: inventory // vector vInv; vector vInvWait; { bool fSendTrickle = false; if (pto->nNextInvSend < nNow) { fSendTrickle = true; pto->nNextInvSend = PoissonNextSend(nNow, 5); } LOCK(pto->cs_inventory); vInv.reserve(pto->vInventoryToSend.size()); vInvWait.reserve(pto->vInventoryToSend.size()); BOOST_FOREACH(const CInv& inv, pto->vInventoryToSend) { if (pto->setInventoryKnown.count(inv)) continue; // trickle out tx inv to protect privacy if (inv.type == MSG_TX && !fSendTrickle) { // 1/4 of tx invs blast to all immediately static uint256 hashSalt; if (hashSalt == 0) hashSalt = GetRandHash(); uint256 hashRand = inv.hash ^ hashSalt; hashRand = Hash(BEGIN(hashRand), END(hashRand)); bool fTrickleWait = ((hashRand & 3) != 0); if (fTrickleWait) { vInvWait.push_back(inv); continue; } } // returns true if wasn't already contained in the set if (pto->setInventoryKnown.insert(inv).second) { vInv.push_back(inv); if (vInv.size() >= 1000) { pto->PushMessage("inv", vInv); vInv.clear(); } } } pto->vInventoryToSend = vInvWait; } if (!vInv.empty()) pto->PushMessage("inv", vInv); // // Message: getdata // vector vGetData; CTxDB txdb("r"); while (!pto->mapAskFor.empty() && (*pto->mapAskFor.begin()).first <= nNow) { const CInv& inv = (*pto->mapAskFor.begin()).second; if (!AlreadyHave(txdb, inv)) { if (fDebugNet) printf("sending getdata: %s\n", inv.ToString().c_str()); vGetData.push_back(inv); if (vGetData.size() >= 1000) { pto->PushMessage("getdata", vGetData); vGetData.clear(); } mapAlreadyAskedFor[inv] = nNow; } pto->mapAskFor.erase(pto->mapAskFor.begin()); } if (!vGetData.empty()) pto->PushMessage("getdata", vGetData); } return true; } class CMainCleanup { public: CMainCleanup() {} ~CMainCleanup() { // block headers std::map::iterator it1 = mapBlockIndex.begin(); for (; it1 != mapBlockIndex.end(); it1++) delete (*it1).second; mapBlockIndex.clear(); // orphan blocks std::map::iterator it2 = mapOrphanBlocks.begin(); for (; it2 != mapOrphanBlocks.end(); it2++) delete (*it2).second; mapOrphanBlocks.clear(); // orphan transactions } } instance_of_cmaincleanup;