// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Copyright (c) 2013 The NovaCoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "txdb-leveldb.h" #include "miner.h" #include "kernel.h" #include "kernel_worker.h" #include "wallet.h" ////////////////////////////////////////////////////////////////////////////// // // BitcoinMiner // int64_t nReserveBalance = 0; static unsigned int nMaxStakeSearchInterval = 60; uint64_t nStakeInputsMapSize = 0; int static FormatHashBlocks(void* pbuffer, unsigned int len) { unsigned char* pdata = (unsigned char*)pbuffer; unsigned int blocks = 1 + ((len + 8) / 64); unsigned char* pend = pdata + 64 * blocks; memset(pdata + len, 0, 64 * blocks - len); pdata[len] = 0x80; unsigned int bits = len * 8; pend[-1] = (bits >> 0) & 0xff; pend[-2] = (bits >> 8) & 0xff; pend[-3] = (bits >> 16) & 0xff; pend[-4] = (bits >> 24) & 0xff; return blocks; } static const unsigned int pSHA256InitState[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; void SHA256Transform(void* pstate, void* pinput, const void* pinit) { SHA256_CTX ctx; unsigned char data[64]; SHA256_Init(&ctx); for (int i = 0; i < 16; i++) ((uint32_t*)data)[i] = ByteReverse(((uint32_t*)pinput)[i]); for (int i = 0; i < 8; i++) ctx.h[i] = ((uint32_t*)pinit)[i]; SHA256_Update(&ctx, data, sizeof(data)); for (int i = 0; i < 8; i++) ((uint32_t*)pstate)[i] = ctx.h[i]; } // Some explaining would be appreciated class COrphan { public: CTransaction* ptx; std::set setDependsOn; double dPriority; double dFeePerKb; COrphan(CTransaction* ptxIn) { ptx = ptxIn; dPriority = dFeePerKb = 0; } }; uint64_t nLastBlockTx = 0; uint64_t nLastBlockSize = 0; uint32_t nLastCoinStakeSearchInterval = 0; // We want to sort transactions by priority and fee, so: typedef std::tuple TxPriority; class TxPriorityCompare { bool byFee; public: TxPriorityCompare(bool _byFee) : byFee(_byFee) { } bool operator()(const TxPriority& a, const TxPriority& b) { if (byFee) { if (std::get<1>(a) == std::get<1>(b)) return std::get<0>(a) < std::get<0>(b); return std::get<1>(a) < std::get<1>(b); } else { if (std::get<0>(a) == std::get<0>(b)) return std::get<1>(a) < std::get<1>(b); return std::get<0>(a) < std::get<0>(b); } } }; // CreateNewBlock: create new block (without proof-of-work/with provided coinstake) std::shared_ptr CreateNewBlock(CWallet* pwallet, CTransaction *txCoinStake) { bool fProofOfStake = txCoinStake != nullptr; // Create new block std::shared_ptr pblock(new CBlock()); if (!pblock.get()) return nullptr; // Create coinbase tx CTransaction txCoinBase; txCoinBase.vin.resize(1); txCoinBase.vin[0].prevout.SetNull(); txCoinBase.vout.resize(1); if (!fProofOfStake) { CReserveKey reservekey(pwallet); txCoinBase.vout[0].scriptPubKey.SetDestination(reservekey.GetReservedKey().GetID()); // Add our coinbase tx as first transaction pblock->vtx.push_back(txCoinBase); } else { // Coinbase output must be empty for Proof-of-Stake block txCoinBase.vout[0].SetEmpty(); // Syncronize timestamps pblock->nTime = txCoinBase.nTime = txCoinStake->nTime; // Add coinbase and coinstake transactions pblock->vtx.push_back(txCoinBase); pblock->vtx.push_back(*txCoinStake); } // Largest block you're willing to create: unsigned int nBlockMaxSize = GetArgUInt("-blockmaxsize", MAX_BLOCK_SIZE_GEN/2); // Limit to betweeen 1K and MAX_BLOCK_SIZE-1K for sanity: nBlockMaxSize = std::max(1000u, std::min(MAX_BLOCK_SIZE-1000u, nBlockMaxSize)); // How much of the block should be dedicated to high-priority transactions, // included regardless of the fees they pay unsigned int nBlockPrioritySize = GetArgUInt("-blockprioritysize", 27000); nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize); // Minimum block size you want to create; block will be filled with free transactions // until there are no more or the block reaches this size: unsigned int nBlockMinSize = GetArgUInt("-blockminsize", 0); nBlockMinSize = std::min(nBlockMaxSize, nBlockMinSize); // Fee-per-kilobyte amount considered the same as "free" // Be careful setting this: if you set it to zero then // a transaction spammer can cheaply fill blocks using // 1-satoshi-fee transactions. It should be set above the real // cost to you of processing a transaction. int64_t nMinTxFee = MIN_TX_FEE; if (mapArgs.count("-mintxfee")) { bool fResult = ParseMoney(mapArgs["-mintxfee"], nMinTxFee); if (!fResult) // Parse error nMinTxFee = MIN_TX_FEE; } CBlockIndex* pindexPrev = pindexBest; pblock->nBits = GetNextTargetRequired(pindexPrev, fProofOfStake); // Collect memory pool transactions into the block int64_t nFees = 0; { LOCK2(cs_main, mempool.cs); CBlockIndex* pindexPrev = pindexBest; CTxDB txdb("r"); // Priority order to process transactions std::list vOrphan; // list memory doesn't move std::map > mapDependers; // This vector will be sorted into a priority queue: std::vector vecPriority; vecPriority.reserve(mempool.mapTx.size()); for (std::map::iterator mi = mempool.mapTx.begin(); mi != mempool.mapTx.end(); ++mi) { CTransaction& tx = (*mi).second; if (tx.IsCoinBase() || tx.IsCoinStake() || !tx.IsFinal()) continue; COrphan* porphan = nullptr; double dPriority = 0; int64_t nTotalIn = 0; bool fMissingInputs = false; for (const CTxIn& txin : tx.vin) { // Read prev transaction CTransaction txPrev; CTxIndex txindex; if (!txPrev.ReadFromDisk(txdb, txin.prevout, txindex)) { // This should never happen; all transactions in the memory // pool should connect to either transactions in the chain // or other transactions in the memory pool. if (!mempool.mapTx.count(txin.prevout.hash)) { printf("ERROR: mempool transaction missing input\n"); if (fDebug) assert("mempool transaction missing input" == 0); fMissingInputs = true; if (porphan) vOrphan.pop_back(); break; } // Has to wait for dependencies if (!porphan) { // Use list for automatic deletion vOrphan.push_back(COrphan(&tx)); porphan = &vOrphan.back(); } mapDependers[txin.prevout.hash].push_back(porphan); porphan->setDependsOn.insert(txin.prevout.hash); nTotalIn += mempool.mapTx[txin.prevout.hash].vout[txin.prevout.n].nValue; continue; } int64_t nValueIn = txPrev.vout[txin.prevout.n].nValue; nTotalIn += nValueIn; int nConf = txindex.GetDepthInMainChain(); dPriority += (double)nValueIn * nConf; } if (fMissingInputs) continue; // Priority is sum(valuein * age) / txsize unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); dPriority /= nTxSize; // This is a more accurate fee-per-kilobyte than is used by the client code, because the // client code rounds up the size to the nearest 1K. That's good, because it gives an // incentive to create smaller transactions. double dFeePerKb = double(nTotalIn-tx.GetValueOut()) / (double(nTxSize)/1000.0); if (porphan) { porphan->dPriority = dPriority; porphan->dFeePerKb = dFeePerKb; } else vecPriority.push_back(TxPriority(dPriority, dFeePerKb, &(*mi).second)); } // Collect transactions into block std::map mapTestPool; uint64_t nBlockSize = 1000; uint64_t nBlockTx = 0; int nBlockSigOps = 100; bool fSortedByFee = (nBlockPrioritySize <= 0); TxPriorityCompare comparer(fSortedByFee); std::make_heap(vecPriority.begin(), vecPriority.end(), comparer); while (!vecPriority.empty()) { // Take highest priority transaction off the priority queue: double dPriority = std::get<0>(vecPriority.front()); double dFeePerKb = std::get<1>(vecPriority.front()); CTransaction& tx = *(std::get<2>(vecPriority.front())); std::pop_heap(vecPriority.begin(), vecPriority.end(), comparer); vecPriority.pop_back(); // Size limits unsigned int nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); if (nBlockSize + nTxSize >= nBlockMaxSize) continue; // Legacy limits on sigOps: unsigned int nTxSigOps = tx.GetLegacySigOpCount(); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; // Timestamp limit if (tx.nTime > GetAdjustedTime() || (fProofOfStake && tx.nTime > txCoinStake->nTime)) continue; // Skip free transactions if we're past the minimum block size: if (fSortedByFee && (dFeePerKb < nMinTxFee) && (nBlockSize + nTxSize >= nBlockMinSize)) continue; // Prioritize by fee once past the priority size or we run out of high-priority // transactions: if (!fSortedByFee && ((nBlockSize + nTxSize >= nBlockPrioritySize) || (dPriority < COIN * 144 / 250))) { fSortedByFee = true; comparer = TxPriorityCompare(fSortedByFee); std::make_heap(vecPriority.begin(), vecPriority.end(), comparer); } // Connecting shouldn't fail due to dependency on other memory pool transactions // because we're already processing them in order of dependency std::map mapTestPoolTmp(mapTestPool); MapPrevTx mapInputs; bool fInvalid; if (!tx.FetchInputs(txdb, mapTestPoolTmp, false, true, mapInputs, fInvalid)) continue; // Transaction fee int64_t nTxFees = tx.GetValueIn(mapInputs)-tx.GetValueOut(); int64_t nMinFee = tx.GetMinFee(nBlockSize, true, GMF_BLOCK, nTxSize); if (nTxFees < nMinFee) continue; // Sigops accumulation nTxSigOps += tx.GetP2SHSigOpCount(mapInputs); if (nBlockSigOps + nTxSigOps >= MAX_BLOCK_SIGOPS) continue; if (!tx.ConnectInputs(txdb, mapInputs, mapTestPoolTmp, CDiskTxPos(1,1,1), pindexPrev, false, true, true, MANDATORY_SCRIPT_VERIFY_FLAGS)) continue; mapTestPoolTmp[tx.GetHash()] = CTxIndex(CDiskTxPos(1,1,1), tx.vout.size()); swap(mapTestPool, mapTestPoolTmp); // Added pblock->vtx.push_back(tx); nBlockSize += nTxSize; ++nBlockTx; nBlockSigOps += nTxSigOps; nFees += nTxFees; if (fDebug && GetBoolArg("-printpriority")) { printf("priority %.1f feeperkb %.1f txid %s\n", dPriority, dFeePerKb, tx.GetHash().ToString().c_str()); } // Add transactions that depend on this one to the priority queue uint256 hash = tx.GetHash(); if (mapDependers.count(hash)) { for (COrphan* porphan : mapDependers[hash]) { if (!porphan->setDependsOn.empty()) { porphan->setDependsOn.erase(hash); if (porphan->setDependsOn.empty()) { vecPriority.push_back(TxPriority(porphan->dPriority, porphan->dFeePerKb, porphan->ptx)); std::push_heap(vecPriority.begin(), vecPriority.end(), comparer); } } } } } nLastBlockTx = nBlockTx; nLastBlockSize = nBlockSize; if (!fProofOfStake) { pblock->vtx[0].vout[0].nValue = GetProofOfWorkReward(pblock->nBits) + nFees; if (fDebug) printf("CreateNewBlock(): PoW reward %" PRIu64 "\n", pblock->vtx[0].vout[0].nValue); } if (fDebug && GetBoolArg("-printpriority")) printf("CreateNewBlock(): total size %" PRIu64 "\n", nBlockSize); // Fill in header pblock->hashPrevBlock = pindexPrev->GetBlockHash(); if (!fProofOfStake) { pblock->nTime = std::max(pindexPrev->GetMedianTimePast()+1, pblock->GetMaxTransactionTime()); pblock->nTime = std::max(pblock->GetBlockTime(), PastDrift(pindexPrev->GetBlockTime())); pblock->UpdateTime(pindexPrev); } pblock->nNonce = 0; } return pblock; } void IncrementExtraNonce(std::shared_ptr& pblock, CBlockIndex* pindexPrev, unsigned int& nExtraNonce) { // Update nExtraNonce static uint256 hashPrevBlock; if (hashPrevBlock != pblock->hashPrevBlock) { nExtraNonce = 0; hashPrevBlock = pblock->hashPrevBlock; } ++nExtraNonce; unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2 pblock->vtx[0].vin[0].scriptSig = (CScript() << nHeight << CBigNum(nExtraNonce)) + COINBASE_FLAGS; assert(pblock->vtx[0].vin[0].scriptSig.size() <= 100); pblock->hashMerkleRoot = pblock->BuildMerkleTree(); } void FormatHashBuffers(const std::shared_ptr& pblock, char* pmidstate, char* pdata, char* phash1) { // // Pre-build hash buffers // struct { struct unnamed2 { int nVersion; uint256 hashPrevBlock; uint256 hashMerkleRoot; unsigned int nTime; unsigned int nBits; unsigned int nNonce; } block; unsigned char pchPadding0[64]; uint256 hash1; unsigned char pchPadding1[64]; } tmp; memset(&tmp, 0, sizeof(tmp)); tmp.block.nVersion = pblock->nVersion; tmp.block.hashPrevBlock = pblock->hashPrevBlock; tmp.block.hashMerkleRoot = pblock->hashMerkleRoot; tmp.block.nTime = pblock->nTime; tmp.block.nBits = pblock->nBits; tmp.block.nNonce = pblock->nNonce; FormatHashBlocks(&tmp.block, sizeof(tmp.block)); FormatHashBlocks(&tmp.hash1, sizeof(tmp.hash1)); // Byte swap all the input buffer for (unsigned int i = 0; i < sizeof(tmp)/4; i++) ((unsigned int*)&tmp)[i] = ByteReverse(((unsigned int*)&tmp)[i]); // Precalc the first half of the first hash, which stays constant SHA256Transform(pmidstate, &tmp.block, pSHA256InitState); memcpy(pdata, &tmp.block, 128); memcpy(phash1, &tmp.hash1, 64); } bool CheckWork(const std::shared_ptr& pblock, CWallet& wallet, CReserveKey& reservekey) { uint256 hashBlock = pblock->GetHash(); uint256 hashTarget = CBigNum().SetCompact(pblock->nBits).getuint256(); if(!pblock->IsProofOfWork()) return error("CheckWork() : %s is not a proof-of-work block", hashBlock.GetHex().c_str()); if (hashBlock > hashTarget) return error("CheckWork() : proof-of-work not meeting target"); //// debug print printf("CheckWork() : new proof-of-work block found \n hash: %s \ntarget: %s\n", hashBlock.GetHex().c_str(), hashTarget.GetHex().c_str()); pblock->print(); printf("generated %s\n", FormatMoney(pblock->vtx[0].vout[0].nValue).c_str()); // Found a solution { LOCK(cs_main); if (pblock->hashPrevBlock != hashBestChain) return error("CheckWork() : generated block is stale"); // Remove key from key pool reservekey.KeepKey(); // Track how many getdata requests this block gets { LOCK(wallet.cs_wallet); wallet.mapRequestCount[hashBlock] = 0; } // Process this block the same as if we had received it from another node if (!ProcessBlock(nullptr, pblock.get())) return error("CheckWork() : ProcessBlock, block not accepted"); } return true; } bool CheckStake(const std::shared_ptr& pblock, CWallet& wallet) { uint256 proofHash = 0, hashTarget = 0; uint256 hashBlock = pblock->GetHash(); if(!pblock->IsProofOfStake()) return error("CheckStake() : %s is not a proof-of-stake block", hashBlock.GetHex().c_str()); // verify hash target and signature of coinstake tx if (!CheckProofOfStake(pblock->vtx[1], pblock->nBits, proofHash, hashTarget)) return error("CheckStake() : proof-of-stake checking failed"); //// debug print printf("CheckStake() : new proof-of-stake block found \n hash: %s \nproofhash: %s \ntarget: %s\n", hashBlock.GetHex().c_str(), proofHash.GetHex().c_str(), hashTarget.GetHex().c_str()); pblock->print(); printf("out %s\n", FormatMoney(pblock->vtx[1].GetValueOut()).c_str()); // Found a solution { LOCK(cs_main); if (pblock->hashPrevBlock != hashBestChain) return error("CheckStake() : generated block is stale"); // Track how many getdata requests this block gets { LOCK(wallet.cs_wallet); wallet.mapRequestCount[hashBlock] = 0; } // Process this block the same as if we had received it from another node if (!ProcessBlock(nullptr, pblock.get())) return error("CheckStake() : ProcessBlock, block not accepted"); } return true; } // Precalculated SHA256 contexts and metadata // (txid, vout.n) => (kernel, (tx.nTime, nAmount)) typedef std::map, std::pair, std::pair > > MidstateMap; // Fill the inputs map with precalculated contexts and metadata bool FillMap(CWallet *pwallet, uint32_t nUpperTime, MidstateMap &inputsMap) { // Choose coins to use int64_t nBalance = pwallet->GetBalance(); if (nBalance <= nReserveBalance) return false; uint32_t nTime = GetAdjustedTime(); CTxDB txdb("r"); { LOCK2(cs_main, pwallet->cs_wallet); CoinsSet setCoins; int64_t nValueIn = 0; if (!pwallet->SelectCoinsSimple(nBalance - nReserveBalance, MIN_TX_FEE, MAX_MONEY, nUpperTime, nCoinbaseMaturity * 10, setCoins, nValueIn)) return error("FillMap() : SelectCoinsSimple failed"); if (setCoins.empty()) return false; CBlock block; CTxIndex txindex; for(CoinsSet::const_iterator pcoin = setCoins.begin(); pcoin != setCoins.end(); pcoin++) { std::pair key = {pcoin->first->GetHash(), pcoin->second}; // Skip existent inputs if (inputsMap.find(key) != inputsMap.end()) continue; // Trying to parse scriptPubKey txnouttype whichType; std::vector vSolutions; if (!Solver(pcoin->first->vout[pcoin->second].scriptPubKey, whichType, vSolutions)) continue; // Only support pay to public key and pay to address if (whichType != TX_PUBKEY && whichType != TX_PUBKEYHASH) continue; // Load transaction index item if (!txdb.ReadTxIndex(pcoin->first->GetHash(), txindex)) continue; // Read block header if (!block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false)) continue; // Only load coins meeting min age requirement if (nStakeMinAge + block.nTime > nTime - nMaxStakeSearchInterval) continue; // Get stake modifier uint64_t nStakeModifier = 0; if (!GetKernelStakeModifier(block.GetHash(), nStakeModifier)) continue; // Build static part of kernel CDataStream ssKernel(SER_GETHASH, 0); ssKernel << nStakeModifier; ssKernel << block.nTime << (txindex.pos.nTxPos - txindex.pos.nBlockPos) << pcoin->first->nTime << pcoin->second; // (txid, vout.n) => (kernel, (tx.nTime, nAmount)) inputsMap[key] = {std::vector(ssKernel.begin(), ssKernel.end()), {pcoin->first->nTime, pcoin->first->vout[pcoin->second].nValue}}; } nStakeInputsMapSize = inputsMap.size(); if (fDebug) printf("FillMap() : Map of %" PRIu64 " precalculated contexts has been created by stake miner\n", nStakeInputsMapSize); } return true; } // Scan inputs map in order to find a solution bool ScanMap(const MidstateMap &inputsMap, uint32_t nBits, MidstateMap::key_type &LuckyInput, std::pair &solution) { static uint32_t nLastCoinStakeSearchTime = GetAdjustedTime(); // startup timestamp uint32_t nSearchTime = GetAdjustedTime(); if (inputsMap.size() > 0 && nSearchTime > nLastCoinStakeSearchTime) { // Scanning interval (begintime, endtime) std::pair interval; interval.first = nSearchTime; interval.second = nSearchTime - std::min(nSearchTime-nLastCoinStakeSearchTime, nMaxStakeSearchInterval); // (txid, nout) => (kernel, (tx.nTime, nAmount)) for(MidstateMap::const_iterator input = inputsMap.begin(); input != inputsMap.end(); input++) { unsigned char *kernel = (unsigned char *) &input->second.first[0]; // scan(State, Bits, Time, Amount, ...) if (ScanKernelBackward(kernel, nBits, input->second.second.first, input->second.second.second, interval, solution)) { // Solution found LuckyInput = input->first; // (txid, nout) return true; } } // Inputs map iteration can be big enough to consume few seconds while scanning. // We're using dynamical calculation of scanning interval in order to compensate this delay. nLastCoinStakeSearchInterval = nSearchTime - nLastCoinStakeSearchTime; nLastCoinStakeSearchTime = nSearchTime; } // No solutions were found return false; } // Stake miner thread void ThreadStakeMiner(void* parg) { SetThreadPriority(THREAD_PRIORITY_LOWEST); // Make this thread recognisable as the mining thread RenameThread("novacoin-miner"); CWallet* pwallet = (CWallet*)parg; MidstateMap inputsMap; if (!FillMap(pwallet, GetAdjustedTime(), inputsMap)) return; bool fTrySync = true; CBlockIndex* pindexPrev = pindexBest; uint32_t nBits = GetNextTargetRequired(pindexPrev, true); printf("ThreadStakeMinter started\n"); try { vnThreadsRunning[THREAD_MINTER]++; MidstateMap::key_type LuckyInput; std::pair solution; // Main miner loop do { if (fShutdown) goto _endloop; while (pwallet->IsLocked()) { Sleep(1000); if (fShutdown) goto _endloop; // Don't be afraid to use a goto if that's the best option. } while (vNodes.empty() || IsInitialBlockDownload()) { fTrySync = true; Sleep(1000); if (fShutdown) goto _endloop; } if (fTrySync) { // Don't try mine blocks unless we're at the top of chain and have at least three p2p connections. fTrySync = false; if (vNodes.size() < 3 || nBestHeight < GetNumBlocksOfPeers()) { Sleep(1000); continue; } } if (ScanMap(inputsMap, nBits, LuckyInput, solution)) { SetThreadPriority(THREAD_PRIORITY_NORMAL); // Remove lucky input from the map inputsMap.erase(inputsMap.find(LuckyInput)); CKey key; CTransaction txCoinStake; // Create new coinstake transaction if (!pwallet->CreateCoinStake(LuckyInput.first, LuckyInput.second, solution.second, nBits, txCoinStake, key)) { std::string strMessage = _("Warning: Unable to create coinstake transaction, see debug.log for the details. Mining thread has been stopped."); strMiscWarning = strMessage; printf("*** %s\n", strMessage.c_str()); break; } // Now we have new coinstake, it's time to create the block ... std::shared_ptr pblock = CreateNewBlock(pwallet, &txCoinStake); if (!pblock) { std::string strMessage = _("Warning: Unable to allocate memory for the new block object. Mining thread has been stopped."); strMiscWarning = strMessage; printf("*** %s\n", strMessage.c_str()); break; } unsigned int nExtraNonce = 0; IncrementExtraNonce(pblock, pindexPrev, nExtraNonce); // ... and sign it if (!key.Sign(pblock->GetHash(), pblock->vchBlockSig)) { std::string strMessage = _("Warning: Proof-of-Stake miner is unable to sign the block (locked wallet?). Mining thread has been stopped."); strMiscWarning = strMessage; printf("*** %s\n", strMessage.c_str()); break; } CheckStake(pblock, *pwallet); SetThreadPriority(THREAD_PRIORITY_LOWEST); Sleep(500); } if (pindexPrev != pindexBest) { // The best block has been changed, we need to refill the map if (FillMap(pwallet, GetAdjustedTime(), inputsMap)) { pindexPrev = pindexBest; nBits = GetNextTargetRequired(pindexPrev, true); } else { // Clear existent data if FillMap failed inputsMap.clear(); } } Sleep(500); _endloop: (void)0; // do nothing } while(!fShutdown); vnThreadsRunning[THREAD_MINTER]--; } catch (std::exception& e) { vnThreadsRunning[THREAD_MINTER]--; PrintException(&e, "ThreadStakeMinter()"); } catch (...) { vnThreadsRunning[THREAD_MINTER]--; PrintException(nullptr, "ThreadStakeMinter()"); } printf("ThreadStakeMinter exiting, %d threads remaining\n", vnThreadsRunning[THREAD_MINTER]); }