// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2012 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef H_BITCOIN_SCRIPT #define H_BITCOIN_SCRIPT #include #include #include #include "keystore.h" #include "bignum.h" #include "base58.h" typedef std::vector valtype; class CTransaction; class CBitcoinAddress; static const unsigned int MAX_SCRIPT_ELEMENT_SIZE = 520; // bytes // Setting nSequence to this value for every input in a transaction // disables nLockTime. static const uint32_t SEQUENCE_FINAL = 0xffffffff; // Threshold for inverted nSequence: below this value it is interpreted // as a relative lock-time, otherwise ignored. //static const uint32_t SEQUENCE_THRESHOLD = 0x80000000; // If this flag set, CTxIn::nSequence is NOT interpreted as a // relative lock-time. static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = 0x80000000; // If CTxIn::nSequence encodes a relative lock-time and this flag // is set, the relative lock-time has units of 512 seconds, // otherwise it specifies blocks with a granularity of 1. static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = 0x00400000; // If CTxIn::nSequence encodes a relative lock-time, this mask is // applied to extract that lock-time from the sequence field. static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff; // IsMine() return codes enum isminetype { MINE_NO = 0, MINE_WATCH_ONLY = 1, MINE_SPENDABLE = 2, MINE_ALL = MINE_WATCH_ONLY | MINE_SPENDABLE }; typedef uint8_t isminefilter; // Signature hash types/flags enum { SIGHASH_ALL = 1, SIGHASH_NONE = 2, SIGHASH_SINGLE = 3, SIGHASH_ANYONECANPAY = 0x80 }; // Script verification flags enum { SCRIPT_VERIFY_NONE = 0, SCRIPT_VERIFY_P2SH = (1U << 0), // evaluate P2SH (BIP16) subscripts SCRIPT_VERIFY_STRICTENC = (1U << 1), // enforce strict conformance to DER and SEC2 for signatures and pubkeys SCRIPT_VERIFY_LOW_S = (1U << 2), // enforce low S values in signatures (depends on STRICTENC) SCRIPT_VERIFY_NOCACHE = (1U << 3), // do not store results in signature cache (but do query it) SCRIPT_VERIFY_NULLDUMMY = (1U << 4), // verify dummy stack item consumed by CHECKMULTISIG is of zero-length SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY = (1U << 9), SCRIPT_VERIFY_CHECKSEQUENCEVERIFY = (1U << 10) }; // Strict verification: // // * force DER encoding; // * force low S; // * ensure that CHECKMULTISIG dummy argument is null. static const unsigned int STRICT_FORMAT_FLAGS = SCRIPT_VERIFY_STRICTENC | SCRIPT_VERIFY_LOW_S | SCRIPT_VERIFY_NULLDUMMY; // Mandatory script verification flags that all new blocks must comply with for // them to be valid. (but old blocks may not comply with) Currently just P2SH, // but in the future other flags may be added, such as a soft-fork to enforce // strict DER encoding. // // Failing one of these tests may trigger a DoS ban - see ConnectInputs() for // details. static const unsigned int MANDATORY_SCRIPT_VERIFY_FLAGS = SCRIPT_VERIFY_P2SH; // Standard script verification flags that standard transactions will comply // with. However scripts violating these flags may still be present in valid // blocks and we must accept those blocks. static const unsigned int STRICT_FLAGS = MANDATORY_SCRIPT_VERIFY_FLAGS | STRICT_FORMAT_FLAGS; enum txnouttype { TX_NONSTANDARD, // 'standard' transaction types: TX_PUBKEY, TX_PUBKEY_DROP, TX_PUBKEYHASH, TX_SCRIPTHASH, TX_MULTISIG, TX_NULL_DATA }; const char* GetTxnOutputType(txnouttype t); // Script opcodes enum opcodetype { // push value OP_0 = 0x00, OP_FALSE = OP_0, OP_PUSHDATA1 = 0x4c, OP_PUSHDATA2 = 0x4d, OP_PUSHDATA4 = 0x4e, OP_1NEGATE = 0x4f, OP_RESERVED = 0x50, OP_1 = 0x51, OP_TRUE=OP_1, OP_2 = 0x52, OP_3 = 0x53, OP_4 = 0x54, OP_5 = 0x55, OP_6 = 0x56, OP_7 = 0x57, OP_8 = 0x58, OP_9 = 0x59, OP_10 = 0x5a, OP_11 = 0x5b, OP_12 = 0x5c, OP_13 = 0x5d, OP_14 = 0x5e, OP_15 = 0x5f, OP_16 = 0x60, // control OP_NOP = 0x61, OP_VER = 0x62, OP_IF = 0x63, OP_NOTIF = 0x64, OP_VERIF = 0x65, OP_VERNOTIF = 0x66, OP_ELSE = 0x67, OP_ENDIF = 0x68, OP_VERIFY = 0x69, OP_RETURN = 0x6a, OP_CHECKLOCKTIMEVERIFY = 0xb1, OP_CHECKSEQUENCEVERIFY = 0xb2, // stack ops OP_TOALTSTACK = 0x6b, OP_FROMALTSTACK = 0x6c, OP_2DROP = 0x6d, OP_2DUP = 0x6e, OP_3DUP = 0x6f, OP_2OVER = 0x70, OP_2ROT = 0x71, OP_2SWAP = 0x72, OP_IFDUP = 0x73, OP_DEPTH = 0x74, OP_DROP = 0x75, OP_DUP = 0x76, OP_NIP = 0x77, OP_OVER = 0x78, OP_PICK = 0x79, OP_ROLL = 0x7a, OP_ROT = 0x7b, OP_SWAP = 0x7c, OP_TUCK = 0x7d, // splice ops OP_CAT = 0x7e, OP_SUBSTR = 0x7f, OP_LEFT = 0x80, OP_RIGHT = 0x81, OP_SIZE = 0x82, // bit logic OP_INVERT = 0x83, OP_AND = 0x84, OP_OR = 0x85, OP_XOR = 0x86, OP_EQUAL = 0x87, OP_EQUALVERIFY = 0x88, OP_RESERVED1 = 0x89, OP_RESERVED2 = 0x8a, // numeric OP_1ADD = 0x8b, OP_1SUB = 0x8c, OP_2MUL = 0x8d, OP_2DIV = 0x8e, OP_NEGATE = 0x8f, OP_ABS = 0x90, OP_NOT = 0x91, OP_0NOTEQUAL = 0x92, OP_ADD = 0x93, OP_SUB = 0x94, OP_MUL = 0x95, OP_DIV = 0x96, OP_MOD = 0x97, OP_LSHIFT = 0x98, OP_RSHIFT = 0x99, OP_BOOLAND = 0x9a, OP_BOOLOR = 0x9b, OP_NUMEQUAL = 0x9c, OP_NUMEQUALVERIFY = 0x9d, OP_NUMNOTEQUAL = 0x9e, OP_LESSTHAN = 0x9f, OP_GREATERTHAN = 0xa0, OP_LESSTHANOREQUAL = 0xa1, OP_GREATERTHANOREQUAL = 0xa2, OP_MIN = 0xa3, OP_MAX = 0xa4, OP_WITHIN = 0xa5, // crypto OP_RIPEMD160 = 0xa6, OP_SHA1 = 0xa7, OP_SHA256 = 0xa8, OP_HASH160 = 0xa9, OP_HASH256 = 0xaa, OP_CODESEPARATOR = 0xab, OP_CHECKSIG = 0xac, OP_CHECKSIGVERIFY = 0xad, OP_CHECKMULTISIG = 0xae, OP_CHECKMULTISIGVERIFY = 0xaf, // expansion OP_NOP1 = 0xb0, OP_NOP4 = 0xb3, OP_NOP5 = 0xb4, OP_NOP6 = 0xb5, OP_NOP7 = 0xb6, OP_NOP8 = 0xb7, OP_NOP9 = 0xb8, OP_NOP10 = 0xb9, // template matching params OP_SMALLDATA = 0xf9, OP_SMALLINTEGER = 0xfa, OP_PUBKEYS = 0xfb, OP_INTEGER = 0xfc, OP_PUBKEYHASH = 0xfd, OP_PUBKEY = 0xfe, OP_INVALIDOPCODE = 0xff }; const char* GetOpName(opcodetype opcode); inline std::string ValueString(const std::vector& vch) { if (vch.size() <= 4) return strprintf("%d", CBigNum(vch).getint32()); else return HexStr(vch); } inline std::string StackString(const std::vector >& vStack) { std::string str; BOOST_FOREACH(const std::vector& vch, vStack) { if (!str.empty()) str += " "; str += ValueString(vch); } return str; } // Serialized script, used inside transaction inputs and outputs class CScript : public std::vector { protected: CScript& push_int64(int64_t n) { if (n == -1 || (n >= 1 && n <= 16)) { push_back((uint8_t)n + (OP_1 - 1)); } else { CBigNum bn(n); *this << bn.getvch(); } return *this; } CScript& push_uint64(uint64_t n) { if (n >= 1 && n <= 16) { push_back((uint8_t)n + (OP_1 - 1)); } else { CBigNum bn(n); *this << bn.getvch(); } return *this; } public: CScript() { } CScript(const CScript& b) : std::vector(b.begin(), b.end()) { } CScript(const_iterator pbegin, const_iterator pend) : std::vector(pbegin, pend) { } #ifndef _MSC_VER CScript(const uint8_t* pbegin, const uint8_t* pend) : std::vector(pbegin, pend) { } #endif CScript& operator+=(const CScript& b) { insert(end(), b.begin(), b.end()); return *this; } friend CScript operator+(const CScript& a, const CScript& b) { CScript ret = a; ret += b; return ret; } explicit CScript(int8_t b) { operator<<(b); } explicit CScript(int16_t b) { operator<<(b); } explicit CScript(int32_t b) { operator<<(b); } explicit CScript(int64_t b) { operator<<(b); } explicit CScript(uint8_t b) { operator<<(b); } explicit CScript(uint16_t b) { operator<<(b); } explicit CScript(uint32_t b) { operator<<(b); } explicit CScript(uint64_t b) { operator<<(b); } explicit CScript(opcodetype b) { operator<<(b); } explicit CScript(const uint256& b) { operator<<(b); } explicit CScript(const CBigNum& b) { operator<<(b); } explicit CScript(const std::vector& b) { operator<<(b); } CScript& operator<<(int8_t b) { return push_int64(b); } CScript& operator<<(int16_t b) { return push_int64(b); } CScript& operator<<(int32_t b) { return push_int64(b); } CScript& operator<<(int64_t b) { return push_int64(b); } CScript& operator<<(uint8_t b) { return push_uint64(b); } CScript& operator<<(uint16_t b) { return push_uint64(b); } CScript& operator<<(uint32_t b) { return push_uint64(b); } CScript& operator<<(uint64_t b) { return push_uint64(b); } CScript& operator<<(opcodetype opcode) { if (opcode < 0 || opcode > 0xff) throw std::runtime_error("CScript::operator<<() : invalid opcode"); insert(end(), (uint8_t)opcode); return *this; } CScript& operator<<(const uint160& b) { insert(end(), sizeof(b)); insert(end(), (uint8_t*)&b, (uint8_t*)&b + sizeof(b)); return *this; } CScript& operator<<(const uint256& b) { insert(end(), sizeof(b)); insert(end(), (uint8_t*)&b, (uint8_t*)&b + sizeof(b)); return *this; } CScript& operator<<(const CPubKey& key) { std::vector vchKey = key.Raw(); return (*this) << vchKey; } CScript& operator<<(const CBigNum& b) { *this << b.getvch(); return *this; } CScript& operator<<(const std::vector& b) { if (b.size() < OP_PUSHDATA1) { insert(end(), (uint8_t)b.size()); } else if (b.size() <= 0xff) { insert(end(), OP_PUSHDATA1); insert(end(), (uint8_t)b.size()); } else if (b.size() <= 0xffff) { insert(end(), OP_PUSHDATA2); uint16_t nSize = (uint16_t) b.size(); insert(end(), (uint8_t*)&nSize, (uint8_t*)&nSize + sizeof(nSize)); } else { insert(end(), OP_PUSHDATA4); uint32_t nSize = (uint32_t) b.size(); insert(end(), (uint8_t*)&nSize, (uint8_t*)&nSize + sizeof(nSize)); } insert(end(), b.begin(), b.end()); return *this; } CScript& operator<<(const CScript& b) { // I'm not sure if this should push the script or concatenate scripts. // If there's ever a use for pushing a script onto a script, delete this member fn assert(!"Warning: Pushing a CScript onto a CScript with << is probably not intended, use + to concatenate!"); return *this; } bool GetOp(iterator& pc, opcodetype& opcodeRet, std::vector& vchRet) { // Wrapper so it can be called with either iterator or const_iterator const_iterator pc2 = pc; bool fRet = GetOp2(pc2, opcodeRet, &vchRet); pc = begin() + (pc2 - begin()); return fRet; } bool GetOp(iterator& pc, opcodetype& opcodeRet) { const_iterator pc2 = pc; bool fRet = GetOp2(pc2, opcodeRet, NULL); pc = begin() + (pc2 - begin()); return fRet; } bool GetOp(const_iterator& pc, opcodetype& opcodeRet, std::vector& vchRet) const { return GetOp2(pc, opcodeRet, &vchRet); } bool GetOp(const_iterator& pc, opcodetype& opcodeRet) const { return GetOp2(pc, opcodeRet, NULL); } bool GetOp2(const_iterator& pc, opcodetype& opcodeRet, std::vector* pvchRet) const { opcodeRet = OP_INVALIDOPCODE; if (pvchRet) pvchRet->clear(); if (pc >= end()) return false; // Read instruction if (end() - pc < 1) return false; uint32_t opcode = *pc++; // Immediate operand if (opcode <= OP_PUSHDATA4) { uint32_t nSize = OP_0; if (opcode < OP_PUSHDATA1) { nSize = opcode; } else if (opcode == OP_PUSHDATA1) { if (end() - pc < 1) return false; nSize = *pc++; } else if (opcode == OP_PUSHDATA2) { if (end() - pc < 2) return false; memcpy(&nSize, &pc[0], 2); pc += 2; } else if (opcode == OP_PUSHDATA4) { if (end() - pc < 4) return false; memcpy(&nSize, &pc[0], 4); pc += 4; } if (end() - pc < 0 || (uint32_t)(end() - pc) < nSize) return false; if (pvchRet) pvchRet->assign(pc, pc + nSize); pc += nSize; } opcodeRet = (opcodetype)opcode; return true; } // Encode/decode small integers: static int DecodeOP_N(opcodetype opcode) { if (opcode == OP_0) return 0; assert(opcode >= OP_1 && opcode <= OP_16); return (opcode - (OP_1 - 1)); } static opcodetype EncodeOP_N(int n) { assert(n >= 0 && n <= 16); if (n == 0) return OP_0; return (opcodetype)(OP_1+n-1); } int FindAndDelete(const CScript& b) { int nFound = 0; if (b.empty()) return nFound; iterator pc = begin(); opcodetype opcode; do { while (end() - pc >= (long)b.size() && memcmp(&pc[0], &b[0], b.size()) == 0) { erase(pc, pc + b.size()); ++nFound; } } while (GetOp(pc, opcode)); return nFound; } int Find(opcodetype op) const { int nFound = 0; opcodetype opcode; for (const_iterator pc = begin(); pc != end() && GetOp(pc, opcode);) if (opcode == op) ++nFound; return nFound; } // Pre-version-0.6, Bitcoin always counted CHECKMULTISIGs // as 20 sigops. With pay-to-script-hash, that changed: // CHECKMULTISIGs serialized in scriptSigs are // counted more accurately, assuming they are of the form // ... OP_N CHECKMULTISIG ... unsigned int GetSigOpCount(bool fAccurate) const; // Accurately count sigOps, including sigOps in // pay-to-script-hash transactions: unsigned int GetSigOpCount(const CScript& scriptSig) const; bool IsPayToScriptHash() const; bool IsPushOnly(const_iterator pc) const { while (pc < end()) { opcodetype opcode; if (!GetOp(pc, opcode)) return false; if (opcode > OP_16) return false; } return true; } // Called by CTransaction::IsStandard and P2SH VerifyScript (which makes it consensus-critical). bool IsPushOnly() const { return this->IsPushOnly(begin()); } // Called by CTransaction::IsStandard. bool HasCanonicalPushes() const; void SetDestination(const CTxDestination& address); void SetAddress(const CBitcoinAddress& dest); void SetMultisig(int nRequired, const std::vector& keys); void PrintHex() const { printf("CScript(%s)\n", HexStr(begin(), end(), true).c_str()); } std::string ToString(bool fShort=false) const { std::string str; opcodetype opcode; std::vector vch; const_iterator pc = begin(); while (pc < end()) { if (!str.empty()) str += " "; if (!GetOp(pc, opcode, vch)) { str += "[error]"; return str; } if (0 <= opcode && opcode <= OP_PUSHDATA4) str += fShort? ValueString(vch).substr(0, 10) : ValueString(vch); else str += GetOpName(opcode); } return str; } void print() const { printf("%s\n", ToString().c_str()); } CScriptID GetID() const { return CScriptID(Hash160(*this)); } }; bool IsCanonicalPubKey(const std::vector &vchPubKey, unsigned int flags); bool IsDERSignature(const valtype &vchSig, bool fWithHashType=false, bool fCheckLow=false); bool IsCanonicalSignature(const std::vector &vchSig, unsigned int flags); bool EvalScript(std::vector >& stack, const CScript& script, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType); bool Solver(const CScript& scriptPubKey, txnouttype& typeRet, std::vector >& vSolutionsRet); int ScriptSigArgsExpected(txnouttype t, const std::vector >& vSolutions); bool IsStandard(const CScript& scriptPubKey, txnouttype& whichType); isminetype IsMine(const CKeyStore& keystore, const CScript& scriptPubKey); //isminetype IsMine(const CKeyStore& keystore, const CTxDestination& dest); isminetype IsMine(const CKeyStore& keystore, const CBitcoinAddress& dest); void ExtractAffectedKeys(const CKeyStore &keystore, const CScript& scriptPubKey, std::vector &vKeys); bool ExtractDestination(const CScript& scriptPubKey, CTxDestination& addressRet); bool ExtractAddress(const CKeyStore &keystore, const CScript& scriptPubKey, CBitcoinAddress& addressRet); bool ExtractDestinations(const CScript& scriptPubKey, txnouttype& typeRet, std::vector& addressRet, int& nRequiredRet); bool SignSignature(const CKeyStore& keystore, const CScript& fromPubKey, CTransaction& txTo, unsigned int nIn, int nHashType=SIGHASH_ALL); bool SignSignature(const CKeyStore& keystore, const CTransaction& txFrom, CTransaction& txTo, unsigned int nIn, int nHashType=SIGHASH_ALL); bool VerifyScript(const CScript& scriptSig, const CScript& scriptPubKey, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType); // Given two sets of signatures for scriptPubKey, possibly with OP_0 placeholders, // combine them intelligently and return the result. CScript CombineSignatures(const CScript& scriptPubKey, const CTransaction& txTo, unsigned int nIn, const CScript& scriptSig1, const CScript& scriptSig2); #endif