/* * Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include "scrypt.h" #include #include #include #include #include static inline uint32_t le32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) + ((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); } static inline void le32enc(void *pp, uint32_t x) { uint8_t *p = (uint8_t *)pp; p[0] = x & 0xff; p[1] = (x >> 8) & 0xff; p[2] = (x >> 16) & 0xff; p[3] = (x >> 24) & 0xff; } static inline void xor_salsa8_sse2(__m128i B[4], const __m128i Bx[4]) { __m128i X0, X1, X2, X3; __m128i T; int i; X0 = B[0] = _mm_xor_si128(B[0], Bx[0]); X1 = B[1] = _mm_xor_si128(B[1], Bx[1]); X2 = B[2] = _mm_xor_si128(B[2], Bx[2]); X3 = B[3] = _mm_xor_si128(B[3], Bx[3]); for (i = 0; i < 8; i += 2) { /* Operate on "columns". */ T = _mm_add_epi32(X0, X3); X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7)); X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25)); T = _mm_add_epi32(X1, X0); X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); T = _mm_add_epi32(X2, X1); X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13)); X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19)); T = _mm_add_epi32(X3, X2); X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); /* Rearrange data. */ X1 = _mm_shuffle_epi32(X1, 0x93); X2 = _mm_shuffle_epi32(X2, 0x4E); X3 = _mm_shuffle_epi32(X3, 0x39); /* Operate on "rows". */ T = _mm_add_epi32(X0, X1); X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7)); X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25)); T = _mm_add_epi32(X3, X0); X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9)); X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23)); T = _mm_add_epi32(X2, X3); X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13)); X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19)); T = _mm_add_epi32(X1, X2); X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18)); X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14)); /* Rearrange data. */ X1 = _mm_shuffle_epi32(X1, 0x39); X2 = _mm_shuffle_epi32(X2, 0x4E); X3 = _mm_shuffle_epi32(X3, 0x93); } B[0] = _mm_add_epi32(B[0], X0); B[1] = _mm_add_epi32(B[1], X1); B[2] = _mm_add_epi32(B[2], X2); B[3] = _mm_add_epi32(B[3], X3); } uint256 scrypt_blockhash__sse2(const uint8_t* input) { uint256 result = 0; uint8_t scratchpad[SCRYPT_BUFFER_SIZE]; uint8_t B[128]; union { __m128i i128[8]; uint32_t u32[32]; } X; __m128i *V; uint32_t i, j, k; V = (__m128i *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); void *const tmp = const_cast(input); PKCS5_PBKDF2_HMAC(static_cast(tmp), 80, input, 80, 1, EVP_sha256(), 128, B); for (k = 0; k < 2; k++) { for (i = 0; i < 16; i++) { X.u32[k * 16 + i] = le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]); } } for (i = 0; i < 1024; i++) { for (k = 0; k < 8; k++) V[i * 8 + k] = X.i128[k]; xor_salsa8_sse2(&X.i128[0], &X.i128[4]); xor_salsa8_sse2(&X.i128[4], &X.i128[0]); } for (i = 0; i < 1024; i++) { j = 8 * (X.u32[16] & 1023); for (k = 0; k < 8; k++) X.i128[k] = _mm_xor_si128(X.i128[k], V[j + k]); xor_salsa8_sse2(&X.i128[0], &X.i128[4]); xor_salsa8_sse2(&X.i128[4], &X.i128[0]); } for (k = 0; k < 2; k++) { for (i = 0; i < 16; i++) { le32enc(&B[(k * 16 + (i * 5 % 16)) * 4], X.u32[k * 16 + i]); } } PKCS5_PBKDF2_HMAC(static_cast(tmp), 80, B, 128, 1, EVP_sha256(), 32, (unsigned char*)&result); return result; }