/*- * Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler, 2013 Balthazar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include #include #include "scrypt.h" #include "pbkdf2.h" #include "util.h" #include "net.h" #define SCRYPT_BUFFER_SIZE (131072 + 63) #if defined (OPTIMIZED_SALSA) && ( defined (__x86_64__) || defined (__i386__) || defined(__arm__) ) extern "C" void scrypt_core(unsigned int *X, unsigned int *V); #else // Generic scrypt_core implementation static inline void xor_salsa8(unsigned int B[16], const unsigned int Bx[16]) { unsigned int x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15; int i; x00 = (B[0] ^= Bx[0]); x01 = (B[1] ^= Bx[1]); x02 = (B[2] ^= Bx[2]); x03 = (B[3] ^= Bx[3]); x04 = (B[4] ^= Bx[4]); x05 = (B[5] ^= Bx[5]); x06 = (B[6] ^= Bx[6]); x07 = (B[7] ^= Bx[7]); x08 = (B[8] ^= Bx[8]); x09 = (B[9] ^= Bx[9]); x10 = (B[10] ^= Bx[10]); x11 = (B[11] ^= Bx[11]); x12 = (B[12] ^= Bx[12]); x13 = (B[13] ^= Bx[13]); x14 = (B[14] ^= Bx[14]); x15 = (B[15] ^= Bx[15]); for (i = 0; i < 8; i += 2) { #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7); x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9); x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13); x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18); /* Operate on rows. */ x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7); x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9); x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13); x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18); #undef R } B[0] += x00; B[1] += x01; B[2] += x02; B[3] += x03; B[4] += x04; B[5] += x05; B[6] += x06; B[7] += x07; B[8] += x08; B[9] += x09; B[10] += x10; B[11] += x11; B[12] += x12; B[13] += x13; B[14] += x14; B[15] += x15; } static inline void scrypt_core(unsigned int *X, unsigned int *V) { unsigned int i, j, k; for (i = 0; i < 1024; i++) { memcpy(&V[i * 32], X, 128); xor_salsa8(&X[0], &X[16]); xor_salsa8(&X[16], &X[0]); } for (i = 0; i < 1024; i++) { j = 32 * (X[16] & 1023); for (k = 0; k < 32; k++) X[k] ^= V[j + k]; xor_salsa8(&X[0], &X[16]); xor_salsa8(&X[16], &X[0]); } } #endif /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes r = 1, p = 1, N = 1024 */ uint256 scrypt_nosalt(const void* input, size_t inputlen, void *scratchpad) { unsigned int *V; unsigned int X[32]; uint256 result = 0; V = (unsigned int *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); PBKDF2_SHA256((const uint8_t*)input, inputlen, (const uint8_t*)input, inputlen, 1, (uint8_t *)X, 128); scrypt_core(X, V); PBKDF2_SHA256((const uint8_t*)input, inputlen, (uint8_t *)X, 128, 1, (uint8_t*)&result, 32); return result; } uint256 scrypt(const void* data, size_t datalen, const void* salt, size_t saltlen, void *scratchpad) { unsigned int *V; unsigned int X[32]; uint256 result = 0; V = (unsigned int *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63)); PBKDF2_SHA256((const uint8_t*)data, datalen, (const uint8_t*)salt, saltlen, 1, (uint8_t *)X, 128); scrypt_core(X, V); PBKDF2_SHA256((const uint8_t*)data, datalen, (uint8_t *)X, 128, 1, (uint8_t*)&result, 32); return result; } uint256 scrypt_hash(const void* input, size_t inputlen) { unsigned char scratchpad[SCRYPT_BUFFER_SIZE]; return scrypt_nosalt(input, inputlen, scratchpad); } uint256 scrypt_salted_hash(const void* input, size_t inputlen, const void* salt, size_t saltlen) { unsigned char scratchpad[SCRYPT_BUFFER_SIZE]; return scrypt(input, inputlen, salt, saltlen, scratchpad); } uint256 scrypt_salted_multiround_hash(const void* input, size_t inputlen, const void* salt, size_t saltlen, const unsigned int nRounds) { uint256 resultHash = scrypt_salted_hash(input, inputlen, salt, saltlen); uint256 transitionalHash = resultHash; for(unsigned int i = 1; i < nRounds; i++) { resultHash = scrypt_salted_hash(input, inputlen, (const void*)&transitionalHash, 32); transitionalHash = resultHash; } return resultHash; } uint256 scrypt_blockhash(const void* input) { unsigned char scratchpad[SCRYPT_BUFFER_SIZE]; return scrypt_nosalt(input, 80, scratchpad); }