// // Unit tests for denial-of-service detection/prevention code // #include #include // for 'map_list_of()' #include #include #include #include "main.h" #include "wallet.h" #include "net.h" #include "util.h" #include // Tests this internal-to-main.cpp method: extern bool AddOrphanTx(const CDataStream& vMsg); extern unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans); extern std::map mapOrphanTransactions; extern std::map > mapOrphanTransactionsByPrev; CService ip(uint32_t i) { struct in_addr s; s.s_addr = i; return CService(CNetAddr(s), GetDefaultPort()); } BOOST_AUTO_TEST_SUITE(DoS_tests) BOOST_AUTO_TEST_CASE(DoS_banning) { CNode::ClearBanned(); CAddress addr1(ip(0xa0b0c001)); CNode dummyNode1(INVALID_SOCKET, addr1, true); dummyNode1.Misbehaving(100); // Should get banned BOOST_CHECK(CNode::IsBanned(addr1)); BOOST_CHECK(!CNode::IsBanned(ip(0xa0b0c001|0x0000ff00))); // Different ip, not banned CAddress addr2(ip(0xa0b0c002)); CNode dummyNode2(INVALID_SOCKET, addr2, true); dummyNode2.Misbehaving(50); BOOST_CHECK(!CNode::IsBanned(addr2)); // 2 not banned yet... BOOST_CHECK(CNode::IsBanned(addr1)); // ... but 1 still should be dummyNode2.Misbehaving(50); BOOST_CHECK(CNode::IsBanned(addr2)); } BOOST_AUTO_TEST_CASE(DoS_banscore) { CNode::ClearBanned(); mapArgs["-banscore"] = "111"; // because 11 is my favorite number CAddress addr1(ip(0xa0b0c001)); CNode dummyNode1(INVALID_SOCKET, addr1, true); dummyNode1.Misbehaving(100); BOOST_CHECK(!CNode::IsBanned(addr1)); dummyNode1.Misbehaving(10); BOOST_CHECK(!CNode::IsBanned(addr1)); dummyNode1.Misbehaving(1); BOOST_CHECK(CNode::IsBanned(addr1)); mapArgs.erase("-banscore"); } BOOST_AUTO_TEST_CASE(DoS_bantime) { CNode::ClearBanned(); int64 nStartTime = GetTime(); SetMockTime(nStartTime); // Overrides future calls to GetTime() CAddress addr(ip(0xa0b0c001)); CNode dummyNode(INVALID_SOCKET, addr, true); dummyNode.Misbehaving(100); BOOST_CHECK(CNode::IsBanned(addr)); SetMockTime(nStartTime+60*60); BOOST_CHECK(CNode::IsBanned(addr)); SetMockTime(nStartTime+60*60*24+1); BOOST_CHECK(!CNode::IsBanned(addr)); } static bool CheckNBits(unsigned int nbits1, int64 time1, unsigned int nbits2, int64 time2)\ { if (time1 > time2) return CheckNBits(nbits2, time2, nbits1, time1); int64 deltaTime = time2-time1; CBigNum required; required.SetCompact(ComputeMinWork(nbits1, deltaTime)); CBigNum have; have.SetCompact(nbits2); return (have <= required); } BOOST_AUTO_TEST_CASE(DoS_checknbits) { using namespace boost::assign; // for 'map_list_of()' // Timestamps,nBits from the bitcoin blockchain. // These are the block-chain checkpoint blocks typedef std::map BlockData; BlockData chainData = map_list_of(1239852051,486604799)(1262749024,486594666) (1279305360,469854461)(1280200847,469830746)(1281678674,469809688) (1296207707,453179945)(1302624061,453036989)(1309640330,437004818) (1313172719,436789733); // Make sure CheckNBits considers every combination of block-chain-lock-in-points // "sane": BOOST_FOREACH(const BlockData::value_type& i, chainData) { BOOST_FOREACH(const BlockData::value_type& j, chainData) { BOOST_CHECK(CheckNBits(i.second, i.first, j.second, j.first)); } } // Test a couple of insane combinations: BlockData::value_type firstcheck = *(chainData.begin()); BlockData::value_type lastcheck = *(chainData.rbegin()); // First checkpoint difficulty at or a while after the last checkpoint time should fail when // compared to last checkpoint BOOST_CHECK(!CheckNBits(firstcheck.second, lastcheck.first+60*10, lastcheck.second, lastcheck.first)); BOOST_CHECK(!CheckNBits(firstcheck.second, lastcheck.first+60*60*24*14, lastcheck.second, lastcheck.first)); // ... but OK if enough time passed for difficulty to adjust downward: BOOST_CHECK(CheckNBits(firstcheck.second, lastcheck.first+60*60*24*365*4, lastcheck.second, lastcheck.first)); } static uint256 RandomHash() { std::vector randbytes(32); RAND_bytes(&randbytes[0], 32); uint256 randomhash(randbytes); return randomhash; } CTransaction RandomOrphan() { std::map::iterator it; it = mapOrphanTransactions.lower_bound(RandomHash()); if (it == mapOrphanTransactions.end()) it = mapOrphanTransactions.begin(); const CDataStream* pvMsg = it->second; CTransaction tx; CDataStream(*pvMsg) >> tx; return tx; } BOOST_AUTO_TEST_CASE(DoS_mapOrphans) { CKey key; key.MakeNewKey(true); CBasicKeyStore keystore; keystore.AddKey(key); // 50 orphan transactions: for (int i = 0; i < 50; i++) { CTransaction tx; tx.vin.resize(1); tx.vin[0].prevout.n = 0; tx.vin[0].prevout.hash = RandomHash(); tx.vin[0].scriptSig << OP_1; tx.vout.resize(1); tx.vout[0].nValue = 1*CENT; tx.vout[0].scriptPubKey.SetBitcoinAddress(key.GetPubKey()); CDataStream ds(SER_DISK, CLIENT_VERSION); ds << tx; AddOrphanTx(ds); } // ... and 50 that depend on other orphans: for (int i = 0; i < 50; i++) { CTransaction txPrev = RandomOrphan(); CTransaction tx; tx.vin.resize(1); tx.vin[0].prevout.n = 0; tx.vin[0].prevout.hash = txPrev.GetHash(); tx.vout.resize(1); tx.vout[0].nValue = 1*CENT; tx.vout[0].scriptPubKey.SetBitcoinAddress(key.GetPubKey()); SignSignature(keystore, txPrev, tx, 0); CDataStream ds(SER_DISK, CLIENT_VERSION); ds << tx; AddOrphanTx(ds); } // This really-big orphan should be ignored: for (int i = 0; i < 10; i++) { CTransaction txPrev = RandomOrphan(); CTransaction tx; tx.vout.resize(1); tx.vout[0].nValue = 1*CENT; tx.vout[0].scriptPubKey.SetBitcoinAddress(key.GetPubKey()); tx.vin.resize(500); for (int j = 0; j < tx.vin.size(); j++) { tx.vin[j].prevout.n = j; tx.vin[j].prevout.hash = txPrev.GetHash(); } SignSignature(keystore, txPrev, tx, 0); // Re-use same signature for other inputs // (they don't have to be valid for this test) for (int j = 1; j < tx.vin.size(); j++) tx.vin[j].scriptSig = tx.vin[0].scriptSig; CDataStream ds(SER_DISK, CLIENT_VERSION); ds << tx; BOOST_CHECK(!AddOrphanTx(ds)); } // Test LimitOrphanTxSize() function: LimitOrphanTxSize(40); BOOST_CHECK(mapOrphanTransactions.size() <= 40); LimitOrphanTxSize(10); BOOST_CHECK(mapOrphanTransactions.size() <= 10); LimitOrphanTxSize(0); BOOST_CHECK(mapOrphanTransactions.empty()); BOOST_CHECK(mapOrphanTransactionsByPrev.empty()); } BOOST_AUTO_TEST_CASE(DoS_checkSig) { // Test signature caching code (see key.cpp Verify() methods) CKey key; key.MakeNewKey(true); CBasicKeyStore keystore; keystore.AddKey(key); // 100 orphan transactions: static const int NPREV=100; CTransaction orphans[NPREV]; for (int i = 0; i < NPREV; i++) { CTransaction& tx = orphans[i]; tx.vin.resize(1); tx.vin[0].prevout.n = 0; tx.vin[0].prevout.hash = GetRandHash(); tx.vin[0].scriptSig << OP_1; tx.vout.resize(1); tx.vout[0].nValue = 1*CENT; tx.vout[0].scriptPubKey.SetBitcoinAddress(key.GetPubKey()); CDataStream ds(SER_DISK, CLIENT_VERSION); ds << tx; AddOrphanTx(ds); } // Create a transaction that depends on orphans: CTransaction tx; tx.vout.resize(1); tx.vout[0].nValue = 1*CENT; tx.vout[0].scriptPubKey.SetBitcoinAddress(key.GetPubKey()); tx.vin.resize(NPREV); for (int j = 0; j < tx.vin.size(); j++) { tx.vin[j].prevout.n = 0; tx.vin[j].prevout.hash = orphans[j].GetHash(); } // Creating signatures primes the cache: boost::posix_time::ptime mst1 = boost::posix_time::microsec_clock::local_time(); for (int j = 0; j < tx.vin.size(); j++) BOOST_CHECK(SignSignature(keystore, orphans[j], tx, j)); boost::posix_time::ptime mst2 = boost::posix_time::microsec_clock::local_time(); boost::posix_time::time_duration msdiff = mst2 - mst1; long nOneValidate = msdiff.total_milliseconds(); if (fDebug) printf("DoS_Checksig sign: %ld\n", nOneValidate); // ... now validating repeatedly should be quick: // 2.8GHz machine, -g build: Sign takes ~760ms, // uncached Verify takes ~250ms, cached Verify takes ~50ms // (for 100 single-signature inputs) mst1 = boost::posix_time::microsec_clock::local_time(); for (int i = 0; i < 5; i++) for (int j = 0; j < tx.vin.size(); j++) BOOST_CHECK(VerifySignature(orphans[j], tx, j, true, SIGHASH_ALL)); mst2 = boost::posix_time::microsec_clock::local_time(); msdiff = mst2 - mst1; long nManyValidate = msdiff.total_milliseconds(); if (fDebug) printf("DoS_Checksig five: %ld\n", nManyValidate); BOOST_CHECK_MESSAGE(nManyValidate < nOneValidate, "Signature cache timing failed"); // Empty a signature, validation should fail: CScript save = tx.vin[0].scriptSig; tx.vin[0].scriptSig = CScript(); BOOST_CHECK(!VerifySignature(orphans[0], tx, 0, true, SIGHASH_ALL)); tx.vin[0].scriptSig = save; // Swap signatures, validation should fail: std::swap(tx.vin[0].scriptSig, tx.vin[1].scriptSig); BOOST_CHECK(!VerifySignature(orphans[0], tx, 0, true, SIGHASH_ALL)); BOOST_CHECK(!VerifySignature(orphans[1], tx, 1, true, SIGHASH_ALL)); std::swap(tx.vin[0].scriptSig, tx.vin[1].scriptSig); // Exercise -maxsigcachesize code: mapArgs["-maxsigcachesize"] = "10"; // Generate a new, different signature for vin[0] to trigger cache clear: CScript oldSig = tx.vin[0].scriptSig; BOOST_CHECK(SignSignature(keystore, orphans[0], tx, 0)); BOOST_CHECK(tx.vin[0].scriptSig != oldSig); for (int j = 0; j < tx.vin.size(); j++) BOOST_CHECK(VerifySignature(orphans[j], tx, j, true, SIGHASH_ALL)); mapArgs.erase("-maxsigcachesize"); LimitOrphanTxSize(0); } BOOST_AUTO_TEST_SUITE_END()