Use 4Way hashing in proof-of-stake miner, if available.
[novacoin.git] / src / kernel_worker.cpp
index 0c3b9d3..ee8400c 100644 (file)
@@ -386,3 +386,248 @@ vector<pair<uint256,uint32_t> >& KernelWorker::GetSolutions()
     return solutions;
 }
 
+// Scan given kernel for solutions
+bool ScanKernelBackward(unsigned char *kernel, uint32_t nBits, uint32_t nInputTxTime, int64_t nValueIn, std::pair<uint32_t, uint32_t> &SearchInterval, std::pair<uint256, uint32_t> &solution)
+{
+    CBigNum bnTargetPerCoinDay;
+    bnTargetPerCoinDay.SetCompact(nBits);
+
+    CBigNum bnValueIn(nValueIn);
+
+    // Get maximum possible target to filter out the majority of obviously insufficient hashes
+    uint256 nMaxTarget = (bnTargetPerCoinDay * bnValueIn * nStakeMaxAge / COIN / nOneDay).getuint256();
+
+#ifdef USE_ASM
+
+#ifdef __x86_64__
+    if (false && fUse8Way) // AVX2 CPU
+    {
+        uint32_t blocks1[8 * 16] __attribute__((aligned(16)));
+        uint32_t blocks2[8 * 16] __attribute__((aligned(16)));
+        uint32_t candidates[8 * 8] __attribute__((aligned(16)));
+
+        vector<uint32_t> vRow = vector<uint32_t>(8);
+        uint32_t *pnKernel = (uint32_t *) kernel;
+
+        for(int i = 0; i < 7; i++)
+        {
+            fill(vRow.begin(), vRow.end(), pnKernel[i]);
+            copyrow8_swap32(&blocks1[i*8], &vRow[0]);
+        }
+
+        memcpy(&blocks1[56], &block1_suffix_8way[0], 36*8);   // sha256 padding
+        memcpy(&blocks2[64], &block2_suffix_8way[0], 32*8);
+
+        uint32_t nHashes[8];
+        uint32_t nTimeStamps[8];
+
+        // Search forward in time from the given timestamp
+        // Stopping search in case of shutting down
+        for (uint32_t nTimeTx=SearchInterval.first, nMaxTarget32 = nMaxTarget.Get32(7); nTimeTx<SearchInterval.second && !fShutdown; nTimeTx -=8)
+        {
+            sha256_init_8way(blocks2);
+            sha256_init_8way(candidates);
+
+            nTimeStamps[0] = nTimeTx;
+            nTimeStamps[1] = nTimeTx-1;
+            nTimeStamps[2] = nTimeTx-2;
+            nTimeStamps[3] = nTimeTx-3;
+            nTimeStamps[4] = nTimeTx-4;
+            nTimeStamps[5] = nTimeTx-5;
+            nTimeStamps[6] = nTimeTx-6;
+            nTimeStamps[7] = nTimeTx-7;
+
+            copyrow8_swap32(&blocks1[24], &nTimeStamps[0]); // Kernel timestamps
+            sha256_transform_8way(&blocks2[0], &blocks1[0], 0); // first hashing
+            sha256_transform_8way(&candidates[0], &blocks2[0], 0); // second hashing
+            copyrow8_swap32(&nHashes[0], &candidates[56]);
+
+            for(int nResult = 0; nResult < 8; nResult++)
+            {
+                if (nHashes[nResult] <= nMaxTarget32) // Possible hit
+                {
+                    uint256 nHashProofOfStake = 0;
+                    uint32_t *pnHashProofOfStake = (uint32_t *) &nHashProofOfStake;
+
+                    for (int i = 0; i < 7; i++)
+                        pnHashProofOfStake[i] = __builtin_bswap32(candidates[(i*8) + nResult]);
+                    pnHashProofOfStake[7] = nHashes[nResult];
+
+                    CBigNum bnCoinDayWeight = bnValueIn * GetWeight((int64_t)nInputTxTime, (int64_t)nTimeStamps[nResult]) / COIN / nOneDay;
+                    CBigNum bnTargetProofOfStake = bnCoinDayWeight * bnTargetPerCoinDay;
+
+                    if (bnTargetProofOfStake >= CBigNum(nHashProofOfStake))
+                    {
+                        solution.first = nHashProofOfStake;
+                        solution.second = nTimeStamps[nResult];
+
+                        return true;
+                    }
+                }
+            }
+        }
+    }
+    else 
+#endif
+    if (fUse4Way) // SSE2 or Neon CPU
+    {
+        uint32_t blocks1[4 * 16] __attribute__((aligned(16)));
+        uint32_t blocks2[4 * 16] __attribute__((aligned(16)));
+        uint32_t candidates[4 * 8] __attribute__((aligned(16)));
+
+        vector<uint32_t> vRow = vector<uint32_t>(4);
+        uint32_t *pnKernel = (uint32_t *) kernel;
+
+        for(int i = 0; i < 7; i++)
+        {
+            fill(vRow.begin(), vRow.end(), pnKernel[i]);
+            copyrow4_swap32(&blocks1[i*4], &vRow[0]);
+        }
+
+        memcpy(&blocks1[28], &block1_suffix_4way[0], 36*4);   // sha256 padding
+        memcpy(&blocks2[32], &block2_suffix_4way[0], 32*4);
+
+        uint32_t nHashes[4];
+        uint32_t nTimeStamps[4];
+
+        // Search forward in time from the given timestamp
+        // Stopping search in case of shutting down
+        for (uint32_t nTimeTx=SearchInterval.first, nMaxTarget32 = nMaxTarget.Get32(7); nTimeTx<SearchInterval.second && !fShutdown; nTimeTx -=4)
+        {
+            sha256_init_4way(blocks2);
+            sha256_init_4way(candidates);
+
+            nTimeStamps[0] = nTimeTx;
+            nTimeStamps[1] = nTimeTx-1;
+            nTimeStamps[2] = nTimeTx-2;
+            nTimeStamps[3] = nTimeTx-3;
+
+            copyrow4_swap32(&blocks1[24], &nTimeStamps[0]); // Kernel timestamps
+            sha256_transform_4way(&blocks2[0], &blocks1[0], 0); // first hashing
+            sha256_transform_4way(&candidates[0], &blocks2[0], 0); // second hashing
+            copyrow4_swap32(&nHashes[0], &candidates[28]);
+
+            for(int nResult = 0; nResult < 4; nResult++)
+            {
+                if (nHashes[nResult] <= nMaxTarget32) // Possible hit
+                {
+                    uint256 nHashProofOfStake = 0;
+                    uint32_t *pnHashProofOfStake = (uint32_t *) &nHashProofOfStake;
+
+                    for (int i = 0; i < 7; i++)
+                        pnHashProofOfStake[i] = __builtin_bswap32(candidates[(i*4) + nResult]);
+                    pnHashProofOfStake[7] = nHashes[nResult];
+
+                    CBigNum bnCoinDayWeight = bnValueIn * GetWeight((int64_t)nInputTxTime, (int64_t)nTimeStamps[nResult]) / COIN / nOneDay;
+                    CBigNum bnTargetProofOfStake = bnCoinDayWeight * bnTargetPerCoinDay;
+
+                    if (bnTargetProofOfStake >= CBigNum(nHashProofOfStake))
+                    {
+                        solution.first = nHashProofOfStake;
+                        solution.second = nTimeStamps[nResult];
+
+                        return true;
+                    }
+                }
+            }
+        }
+    }
+    else // Other CPU
+    {
+#endif
+
+#if !defined(USE_ASM) || defined(__i386__)
+        SHA256_CTX ctx, workerCtx;
+        // Init new sha256 context and update it
+        //   with first 24 bytes of kernel
+        SHA256_Init(&ctx);
+        SHA256_Update(&ctx, kernel, 8 + 16);
+        workerCtx = ctx; // save context
+
+        // Search backward in time from the given timestamp
+        // Stopping search in case of shutting down
+        for (uint32_t nTimeTx=SearchInterval.first; nTimeTx>SearchInterval.second && !fShutdown; nTimeTx--)
+        {
+            // Complete first hashing iteration
+            uint256 hash1;
+            SHA256_Update(&ctx, (unsigned char*)&nTimeTx, 4);
+            SHA256_Final((unsigned char*)&hash1, &ctx);
+
+            // Restore context
+            ctx = workerCtx;
+
+            // Finally, calculate kernel hash
+            uint256 hashProofOfStake;
+            SHA256((unsigned char*)&hash1, sizeof(hashProofOfStake), (unsigned char*)&hashProofOfStake);
+
+            // Skip if hash doesn't satisfy the maximum target
+            if (hashProofOfStake > nMaxTarget)
+                continue;
+
+            CBigNum bnCoinDayWeight = CBigNum(nValueIn) * GetWeight((int64_t)nInputTxTime, (int64_t)nTimeTx) / COIN / nOneDay;
+            CBigNum bnTargetProofOfStake = bnCoinDayWeight * bnTargetPerCoinDay;
+
+            if (bnTargetProofOfStake >= CBigNum(hashProofOfStake))
+            {
+                solution.first = hashProofOfStake;
+                solution.second = nTimeTx;
+
+                return true;
+            }
+        }
+#else
+        uint32_t block1[16] __attribute__((aligned(16)));
+        uint32_t block2[16] __attribute__((aligned(16)));
+        uint32_t candidate[8] __attribute__((aligned(16)));
+
+        memcpy(&block1[7], &block1_suffix[0], 36);   // sha256 padding
+        memcpy(&block2[8], &block2_suffix[0], 32);
+
+        uint32_t *pnKernel = (uint32_t *) kernel;
+
+        for (int i = 0; i < 6; i++)
+            block1[i] = __builtin_bswap32(pnKernel[i]);
+
+        // Search forward in time from the given timestamp
+        // Stopping search in case of shutting down
+        for (uint32_t nTimeTx=SearchInterval.first, nMaxTarget32 = nMaxTarget.Get32(7); nTimeTx<SearchInterval.second && !fShutdown; nTimeTx--)
+        {
+            memcpy(&block2[0], &sha256_initial[0], 32);
+            memcpy(&candidate[0], &sha256_initial[0], 32);
+
+            block1[6] = __builtin_bswap32(nTimeTx);
+
+            sha256_transform(&block2[0], &block1[0], 0); // first hashing
+            sha256_transform(&candidate[0], &block2[0], 0); // second hashing
+
+            uint32_t nHash7 = __builtin_bswap32(candidate[7]);
+
+            // Skip if hash doesn't satisfy the maximum target
+            if (nHash7 > nMaxTarget32)
+                continue;
+
+            uint256 nHashProofOfStake;
+            uint32_t *pnHashProofOfStake = (uint32_t *) &nHashProofOfStake;
+
+            for (int i = 0; i < 7; i++)
+                pnHashProofOfStake[i] = __builtin_bswap32(candidate[i]);
+            pnHashProofOfStake[7] = nHash7;
+
+            CBigNum bnCoinDayWeight = bnValueIn * GetWeight((int64_t)nInputTxTime, (int64_t)nTimeTx) / COIN / nOneDay;
+            CBigNum bnTargetProofOfStake = bnCoinDayWeight * bnTargetPerCoinDay;
+
+            if (bnTargetProofOfStake >= CBigNum(nHashProofOfStake))
+            {
+                solution.first = nHashProofOfStake;
+                solution.second = nTimeTx;
+
+                return true;
+            }
+        }
+#endif
+#ifdef USE_ASM
+    }
+#endif
+
+    return false;
+}