update BIP32 to its final spec
[electrum-nvc.git] / lib / bitcoin.py
1 #!/usr/bin/env python
2 #
3 # Electrum - lightweight Bitcoin client
4 # Copyright (C) 2011 thomasv@gitorious
5 #
6 # This program is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.
10 #
11 # This program is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see <http://www.gnu.org/licenses/>.
18
19
20 import hashlib, base64, ecdsa, re
21 from util import print_error
22
23 def rev_hex(s):
24     return s.decode('hex')[::-1].encode('hex')
25
26 def int_to_hex(i, length=1):
27     s = hex(i)[2:].rstrip('L')
28     s = "0"*(2*length - len(s)) + s
29     return rev_hex(s)
30
31 def var_int(i):
32     # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
33     if i<0xfd:
34         return int_to_hex(i)
35     elif i<=0xffff:
36         return "fd"+int_to_hex(i,2)
37     elif i<=0xffffffff:
38         return "fe"+int_to_hex(i,4)
39     else:
40         return "ff"+int_to_hex(i,8)
41
42 def op_push(i):
43     if i<0x4c:
44         return int_to_hex(i)
45     elif i<0xff:
46         return '4c' + int_to_hex(i)
47     elif i<0xffff:
48         return '4d' + int_to_hex(i,2)
49     else:
50         return '4e' + int_to_hex(i,4)
51     
52
53
54 Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
55 hash_encode = lambda x: x[::-1].encode('hex')
56 hash_decode = lambda x: x.decode('hex')[::-1]
57
58
59 # pywallet openssl private key implementation
60
61 def i2d_ECPrivateKey(pkey, compressed=False):
62     if compressed:
63         key = '3081d30201010420' + \
64               '%064x' % pkey.secret + \
65               'a081a53081a2020101302c06072a8648ce3d0101022100' + \
66               '%064x' % _p + \
67               '3006040100040107042102' + \
68               '%064x' % _Gx + \
69               '022100' + \
70               '%064x' % _r + \
71               '020101a124032200'
72     else:
73         key = '308201130201010420' + \
74               '%064x' % pkey.secret + \
75               'a081a53081a2020101302c06072a8648ce3d0101022100' + \
76               '%064x' % _p + \
77               '3006040100040107044104' + \
78               '%064x' % _Gx + \
79               '%064x' % _Gy + \
80               '022100' + \
81               '%064x' % _r + \
82               '020101a144034200'
83         
84     return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
85     
86 def i2o_ECPublicKey(pubkey, compressed=False):
87     # public keys are 65 bytes long (520 bits)
88     # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
89     # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
90     # compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
91     if compressed:
92         if pubkey.point.y() & 1:
93             key = '03' + '%064x' % pubkey.point.x()
94         else:
95             key = '02' + '%064x' % pubkey.point.x()
96     else:
97         key = '04' + \
98               '%064x' % pubkey.point.x() + \
99               '%064x' % pubkey.point.y()
100             
101     return key.decode('hex')
102             
103 # end pywallet openssl private key implementation
104
105                                                 
106             
107 ############ functions from pywallet ##################### 
108
109 def hash_160(public_key):
110     try:
111         md = hashlib.new('ripemd160')
112         md.update(hashlib.sha256(public_key).digest())
113         return md.digest()
114     except:
115         import ripemd
116         md = ripemd.new(hashlib.sha256(public_key).digest())
117         return md.digest()
118
119
120 def public_key_to_bc_address(public_key):
121     h160 = hash_160(public_key)
122     return hash_160_to_bc_address(h160)
123
124 def hash_160_to_bc_address(h160, addrtype = 0):
125     vh160 = chr(addrtype) + h160
126     h = Hash(vh160)
127     addr = vh160 + h[0:4]
128     return b58encode(addr)
129
130 def bc_address_to_hash_160(addr):
131     bytes = b58decode(addr, 25)
132     return ord(bytes[0]), bytes[1:21]
133
134 def encode_point(pubkey, compressed=False):
135     order = generator_secp256k1.order()
136     p = pubkey.pubkey.point
137     x_str = ecdsa.util.number_to_string(p.x(), order)
138     y_str = ecdsa.util.number_to_string(p.y(), order)
139     if compressed:
140         return chr(2 + (p.y() & 1)) + x_str
141     else:
142         return chr(4) + pubkey.to_string() #x_str + y_str
143
144 __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
145 __b58base = len(__b58chars)
146
147 def b58encode(v):
148     """ encode v, which is a string of bytes, to base58."""
149
150     long_value = 0L
151     for (i, c) in enumerate(v[::-1]):
152         long_value += (256**i) * ord(c)
153
154     result = ''
155     while long_value >= __b58base:
156         div, mod = divmod(long_value, __b58base)
157         result = __b58chars[mod] + result
158         long_value = div
159     result = __b58chars[long_value] + result
160
161     # Bitcoin does a little leading-zero-compression:
162     # leading 0-bytes in the input become leading-1s
163     nPad = 0
164     for c in v:
165         if c == '\0': nPad += 1
166         else: break
167
168     return (__b58chars[0]*nPad) + result
169
170 def b58decode(v, length):
171     """ decode v into a string of len bytes."""
172     long_value = 0L
173     for (i, c) in enumerate(v[::-1]):
174         long_value += __b58chars.find(c) * (__b58base**i)
175
176     result = ''
177     while long_value >= 256:
178         div, mod = divmod(long_value, 256)
179         result = chr(mod) + result
180         long_value = div
181     result = chr(long_value) + result
182
183     nPad = 0
184     for c in v:
185         if c == __b58chars[0]: nPad += 1
186         else: break
187
188     result = chr(0)*nPad + result
189     if length is not None and len(result) != length:
190         return None
191
192     return result
193
194
195 def EncodeBase58Check(vchIn):
196     hash = Hash(vchIn)
197     return b58encode(vchIn + hash[0:4])
198
199 def DecodeBase58Check(psz):
200     vchRet = b58decode(psz, None)
201     key = vchRet[0:-4]
202     csum = vchRet[-4:]
203     hash = Hash(key)
204     cs32 = hash[0:4]
205     if cs32 != csum:
206         return None
207     else:
208         return key
209
210 def PrivKeyToSecret(privkey):
211     return privkey[9:9+32]
212
213 def SecretToASecret(secret, compressed=False, addrtype=0):
214     vchIn = chr((addrtype+128)&255) + secret
215     if compressed: vchIn += '\01'
216     return EncodeBase58Check(vchIn)
217
218 def ASecretToSecret(key, addrtype=0):
219     vch = DecodeBase58Check(key)
220     if vch and vch[0] == chr((addrtype+128)&255):
221         return vch[1:]
222     else:
223         return False
224
225 def regenerate_key(sec):
226     b = ASecretToSecret(sec)
227     if not b:
228         return False
229     b = b[0:32]
230     secret = int('0x' + b.encode('hex'), 16)
231     return EC_KEY(secret)
232
233 def GetPubKey(pubkey, compressed=False):
234     return i2o_ECPublicKey(pubkey, compressed)
235
236 def GetPrivKey(pkey, compressed=False):
237     return i2d_ECPrivateKey(pkey, compressed)
238
239 def GetSecret(pkey):
240     return ('%064x' % pkey.secret).decode('hex')
241
242 def is_compressed(sec):
243     b = ASecretToSecret(sec)
244     return len(b) == 33
245
246
247 def address_from_private_key(sec):
248     # rebuild public key from private key, compressed or uncompressed
249     pkey = regenerate_key(sec)
250     assert pkey
251
252     # figure out if private key is compressed
253     compressed = is_compressed(sec)
254         
255     # rebuild private and public key from regenerated secret
256     private_key = GetPrivKey(pkey, compressed)
257     public_key = GetPubKey(pkey.pubkey, compressed)
258     address = public_key_to_bc_address(public_key)
259     return address
260
261
262 def is_valid(addr):
263     ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
264     if not ADDRESS_RE.match(addr): return False
265     try:
266         addrtype, h = bc_address_to_hash_160(addr)
267     except:
268         return False
269     return addr == hash_160_to_bc_address(h, addrtype)
270
271
272 ########### end pywallet functions #######################
273
274 # secp256k1, http://www.oid-info.com/get/1.3.132.0.10
275 _p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
276 _r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
277 _b = 0x0000000000000000000000000000000000000000000000000000000000000007L
278 _a = 0x0000000000000000000000000000000000000000000000000000000000000000L
279 _Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
280 _Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
281 curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
282 generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
283 oid_secp256k1 = (1,3,132,0,10)
284 SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 ) 
285
286 from ecdsa.util import string_to_number, number_to_string
287
288 def msg_magic(message):
289     return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
290
291
292 class EC_KEY(object):
293     def __init__( self, secret ):
294         self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
295         self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
296         self.secret = secret
297
298     def sign_message(self, message, compressed, address):
299         private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
300         public_key = private_key.get_verifying_key()
301         signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
302         assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
303         for i in range(4):
304             sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
305             try:
306                 self.verify_message( address, sig, message)
307                 return sig
308             except:
309                 continue
310         else:
311             raise BaseException("error: cannot sign message")
312
313     @classmethod
314     def verify_message(self, address, signature, message):
315         """ See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
316         from ecdsa import numbertheory, ellipticcurve, util
317         import msqr
318         curve = curve_secp256k1
319         G = generator_secp256k1
320         order = G.order()
321         # extract r,s from signature
322         sig = base64.b64decode(signature)
323         if len(sig) != 65: raise BaseException("Wrong encoding")
324         r,s = util.sigdecode_string(sig[1:], order)
325         nV = ord(sig[0])
326         if nV < 27 or nV >= 35:
327             raise BaseException("Bad encoding")
328         if nV >= 31:
329             compressed = True
330             nV -= 4
331         else:
332             compressed = False
333
334         recid = nV - 27
335         # 1.1
336         x = r + (recid/2) * order
337         # 1.3
338         alpha = ( x * x * x  + curve.a() * x + curve.b() ) % curve.p()
339         beta = msqr.modular_sqrt(alpha, curve.p())
340         y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
341         # 1.4 the constructor checks that nR is at infinity
342         R = ellipticcurve.Point(curve, x, y, order)
343         # 1.5 compute e from message:
344         h = Hash( msg_magic(message) )
345         e = string_to_number(h)
346         minus_e = -e % order
347         # 1.6 compute Q = r^-1 (sR - eG)
348         inv_r = numbertheory.inverse_mod(r,order)
349         Q = inv_r * ( s * R + minus_e * G )
350         public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
351         # check that Q is the public key
352         public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
353         # check that we get the original signing address
354         addr = public_key_to_bc_address( encode_point(public_key, compressed) )
355         if address != addr:
356             raise BaseException("Bad signature")
357
358
359 ###################################### BIP32 ##############################
360
361 random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
362 BIP32_PRIME = 0x80000000
363
364 def bip32_init(seed):
365     import hmac
366     seed = seed.decode('hex')        
367     I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
368
369     master_secret = I[0:32]
370     master_chain = I[32:]
371
372     K, K_compressed = get_pubkeys_from_secret(master_secret)
373     return master_secret, master_chain, K, K_compressed
374
375
376 def get_pubkeys_from_secret(secret):
377     # public key
378     curve = SECP256k1
379     private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
380     public_key = private_key.get_verifying_key()
381     K = public_key.to_string()
382     K_compressed = GetPubKey(public_key.pubkey,True)
383     return K, K_compressed
384
385
386
387     
388 def CKD(k, c, n):
389     import hmac
390     from ecdsa.util import string_to_number, number_to_string
391     order = generator_secp256k1.order()
392     keypair = EC_KEY(string_to_number(k))
393     K = GetPubKey(keypair.pubkey,True)
394
395     if n & BIP32_PRIME:
396         data = chr(0) + k + rev_hex(int_to_hex(n,4)).decode('hex')
397         I = hmac.new(c, data, hashlib.sha512).digest()
398     else:
399         I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
400         
401     k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
402     c_n = I[32:]
403     return k_n, c_n
404
405
406 def CKD_prime(K, c, n):
407     import hmac
408     from ecdsa.util import string_to_number, number_to_string
409     order = generator_secp256k1.order()
410
411     if n & BIP32_PRIME: raise
412
413     K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
414     K_compressed = GetPubKey(K_public_key.pubkey,True)
415
416     I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
417
418     curve = SECP256k1
419     pubkey_point = string_to_number(I[0:32])*curve.generator + K_public_key.pubkey.point
420     public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
421
422     K_n = public_key.to_string()
423     K_n_compressed = GetPubKey(public_key.pubkey,True)
424     c_n = I[32:]
425
426     return K_n, K_n_compressed, c_n
427
428
429
430 class ElectrumSequence:
431     """  Privatekey(type,n) = Master_private_key + H(n|S|type)  """
432
433     def __init__(self, mpk, mpk2 = None, mpk3 = None):
434         self.mpk = mpk
435         self.mpk2 = mpk2
436         self.mpk3 = mpk3
437
438     @classmethod
439     def mpk_from_seed(klass, seed):
440         curve = SECP256k1
441         secexp = klass.stretch_key(seed)
442         master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
443         master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
444         return master_public_key
445
446     @classmethod
447     def stretch_key(self,seed):
448         oldseed = seed
449         for i in range(100000):
450             seed = hashlib.sha256(seed + oldseed).digest()
451         return string_to_number( seed )
452
453     def get_sequence(self, sequence, mpk):
454         for_change, n = sequence
455         return string_to_number( Hash( "%d:%d:"%(n,for_change) + mpk.decode('hex') ) )
456
457     def get_address(self, sequence):
458         if not self.mpk2:
459             pubkey = self.get_pubkey(sequence)
460             address = public_key_to_bc_address( pubkey.decode('hex') )
461         elif not self.mpk3:
462             pubkey1 = self.get_pubkey(sequence)
463             pubkey2 = self.get_pubkey(sequence, mpk = self.mpk2)
464             address = Transaction.multisig_script([pubkey1, pubkey2], 2)["address"]
465         else:
466             pubkey1 = self.get_pubkey(sequence)
467             pubkey2 = self.get_pubkey(sequence, mpk = self.mpk2)
468             pubkey3 = self.get_pubkey(sequence, mpk = self.mpk3)
469             address = Transaction.multisig_script([pubkey1, pubkey2, pubkey3], 2)["address"]
470         return address
471
472     def get_pubkey(self, sequence, mpk=None):
473         curve = SECP256k1
474         if mpk is None: mpk = self.mpk
475         z = self.get_sequence(sequence, mpk)
476         master_public_key = ecdsa.VerifyingKey.from_string( mpk.decode('hex'), curve = SECP256k1 )
477         pubkey_point = master_public_key.pubkey.point + z*curve.generator
478         public_key2 = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
479         return '04' + public_key2.to_string().encode('hex')
480
481     def get_private_key_from_stretched_exponent(self, sequence, secexp):
482         order = generator_secp256k1.order()
483         secexp = ( secexp + self.get_sequence(sequence, self.mpk) ) % order
484         pk = number_to_string( secexp, generator_secp256k1.order() )
485         compressed = False
486         return SecretToASecret( pk, compressed )
487         
488     def get_private_key(self, sequence, seed):
489         secexp = self.stretch_key(seed)
490         return self.get_private_key_from_stretched_exponent(sequence, secexp)
491
492     def get_private_keys(self, sequence_list, seed):
493         secexp = self.stretch_key(seed)
494         return [ self.get_private_key_from_stretched_exponent( sequence, secexp) for sequence in sequence_list]
495
496     def check_seed(self, seed):
497         curve = SECP256k1
498         secexp = self.stretch_key(seed)
499         master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
500         master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
501         if master_public_key != self.mpk:
502             print_error('invalid password (mpk)')
503             raise BaseException('Invalid password')
504         return True
505
506     def get_input_info(self, sequence):
507         if not self.mpk2:
508             pk_addr = self.get_address(sequence)
509             redeemScript = None
510         elif not self.mpk3:
511             pubkey1 = self.get_pubkey(sequence)
512             pubkey2 = self.get_pubkey(sequence,mpk=self.mpk2)
513             pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key
514             redeemScript = Transaction.multisig_script([pubkey1, pubkey2], 2)['redeemScript']
515         else:
516             pubkey1 = self.get_pubkey(sequence)
517             pubkey2 = self.get_pubkey(sequence, mpk=self.mpk2)
518             pubkey3 = self.get_pubkey(sequence, mpk=self.mpk3)
519             pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key
520             redeemScript = Transaction.multisig_script([pubkey1, pubkey2, pubkey3], 2)['redeemScript']
521         return pk_addr, redeemScript
522
523
524
525
526 class BIP32Sequence:
527
528     def __init__(self, mpk, mpk2 = None, mpk3 = None):
529         self.mpk = mpk
530         self.mpk2 = mpk2
531         self.mpk3 = mpk3
532     
533     @classmethod
534     def mpk_from_seed(klass, seed):
535         master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
536         return master_public_key.encode('hex'), master_chain.encode('hex')
537
538     def get_pubkey(self, sequence, mpk = None):
539         if not mpk: mpk = self.mpk
540         master_public_key, master_chain = mpk
541         K = master_public_key.decode('hex')
542         chain = master_chain.decode('hex')
543         for i in sequence:
544             K, K_compressed, chain = CKD_prime(K, chain, i)
545         return K_compressed.encode('hex')
546
547     def get_address(self, sequence):
548         if not self.mpk2:
549             pubkey = self.get_pubkey(sequence)
550             address = public_key_to_bc_address( pubkey.decode('hex') )
551         elif not self.mpk3:
552             pubkey1 = self.get_pubkey(sequence)
553             pubkey2 = self.get_pubkey(sequence, mpk = self.mpk2)
554             address = Transaction.multisig_script([pubkey1, pubkey2], 2)["address"]
555         else:
556             pubkey1 = self.get_pubkey(sequence)
557             pubkey2 = self.get_pubkey(sequence, mpk = self.mpk2)
558             pubkey3 = self.get_pubkey(sequence, mpk = self.mpk3)
559             address = Transaction.multisig_script([pubkey1, pubkey2, pubkey3], 2)["address"]
560         return address
561
562     def get_private_key(self, sequence, seed):
563         master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
564         chain = master_chain
565         k = master_secret
566         for i in sequence:
567             k, chain = CKD(k, chain, i)
568         return SecretToASecret(k, True)
569
570     def get_private_keys(self, sequence_list, seed):
571         return [ self.get_private_key( sequence, seed) for sequence in sequence_list]
572
573     def check_seed(self, seed):
574         master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
575         assert self.mpk == (master_public_key.encode('hex'), master_chain.encode('hex'))
576
577     def get_input_info(self, sequence):
578         if not self.mpk2:
579             pk_addr = self.get_address(sequence)
580             redeemScript = None
581         elif not self.mpk3:
582             pubkey1 = self.get_pubkey(sequence)
583             pubkey2 = self.get_pubkey(sequence, mpk=self.mpk2)
584             pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key
585             redeemScript = Transaction.multisig_script([pubkey1, pubkey2], 2)['redeemScript']
586         else:
587             pubkey1 = self.get_pubkey(sequence)
588             pubkey2 = self.get_pubkey(sequence, mpk=self.mpk2)
589             pubkey3 = self.get_pubkey(sequence, mpk=self.mpk3)
590             pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key
591             redeemScript = Transaction.multisig_script([pubkey1, pubkey2, pubkey3], 2)['redeemScript']
592         return pk_addr, redeemScript
593
594 ################################## transactions
595
596 MIN_RELAY_TX_FEE = 10000
597
598 class Transaction:
599     
600     def __init__(self, raw):
601         self.raw = raw
602         self.deserialize()
603         self.inputs = self.d['inputs']
604         self.outputs = self.d['outputs']
605         self.outputs = map(lambda x: (x['address'],x['value']), self.outputs)
606         self.input_info = None
607         self.is_complete = True
608         
609     @classmethod
610     def from_io(klass, inputs, outputs):
611         raw = klass.serialize(inputs, outputs, for_sig = -1) # for_sig=-1 means do not sign
612         self = klass(raw)
613         self.is_complete = False
614         self.inputs = inputs
615         self.outputs = outputs
616         extras = []
617         for i in self.inputs:
618             e = { 'txid':i['tx_hash'], 'vout':i['index'], 'scriptPubKey':i.get('raw_output_script') }
619             extras.append(e)
620         self.input_info = extras
621         return self
622
623     def __str__(self):
624         return self.raw
625
626     @classmethod
627     def multisig_script(klass, public_keys, num=None):
628         n = len(public_keys)
629         if num is None: num = n
630         # supports only "2 of 2", and "2 of 3" transactions
631         assert num <= n and n in [2,3]
632     
633         if num==2:
634             s = '52'
635         elif num == 3:
636             s = '53'
637         else:
638             raise
639     
640         for k in public_keys:
641             s += var_int(len(k)/2)
642             s += k
643         if n==2:
644             s += '52'
645         elif n==3:
646             s += '53'
647         else:
648             raise
649         s += 'ae'
650
651         out = { "address": hash_160_to_bc_address(hash_160(s.decode('hex')), 5), "redeemScript":s }
652         return out
653
654     @classmethod
655     def serialize( klass, inputs, outputs, for_sig = None ):
656
657         s  = int_to_hex(1,4)                                         # version
658         s += var_int( len(inputs) )                                  # number of inputs
659         for i in range(len(inputs)):
660             txin = inputs[i]
661             s += txin['tx_hash'].decode('hex')[::-1].encode('hex')   # prev hash
662             s += int_to_hex(txin['index'],4)                         # prev index
663
664             if for_sig is None:
665                 pubkeysig = txin.get('pubkeysig')
666                 if pubkeysig:
667                     pubkey, sig = pubkeysig[0]
668                     sig = sig + chr(1)                               # hashtype
669                     script  = op_push( len(sig))
670                     script += sig.encode('hex')
671                     script += op_push( len(pubkey))
672                     script += pubkey.encode('hex')
673                 else:
674                     signatures = txin['signatures']
675                     pubkeys = txin['pubkeys']
676                     script = '00'                                    # op_0
677                     for sig in signatures:
678                         sig = sig + '01'
679                         script += op_push(len(sig)/2)
680                         script += sig
681
682                     redeem_script = klass.multisig_script(pubkeys,2).get('redeemScript')
683                     script += op_push(len(redeem_script)/2)
684                     script += redeem_script
685
686             elif for_sig==i:
687                 if txin.get('redeemScript'):
688                     script = txin['redeemScript']                    # p2sh uses the inner script
689                 else:
690                     script = txin['raw_output_script']               # scriptsig
691             else:
692                 script=''
693             s += var_int( len(script)/2 )                            # script length
694             s += script
695             s += "ffffffff"                                          # sequence
696
697         s += var_int( len(outputs) )                                 # number of outputs
698         for output in outputs:
699             addr, amount = output
700             s += int_to_hex( amount, 8)                              # amount
701             addrtype, hash_160 = bc_address_to_hash_160(addr)
702             if addrtype == 0:
703                 script = '76a9'                                      # op_dup, op_hash_160
704                 script += '14'                                       # push 0x14 bytes
705                 script += hash_160.encode('hex')
706                 script += '88ac'                                     # op_equalverify, op_checksig
707             elif addrtype == 5:
708                 script = 'a9'                                        # op_hash_160
709                 script += '14'                                       # push 0x14 bytes
710                 script += hash_160.encode('hex')
711                 script += '87'                                       # op_equal
712             else:
713                 raise
714             
715             s += var_int( len(script)/2 )                           #  script length
716             s += script                                             #  script
717         s += int_to_hex(0,4)                                        #  lock time
718         if for_sig is not None and for_sig != -1:
719             s += int_to_hex(1, 4)                                   #  hash type
720         return s
721
722
723     def for_sig(self,i):
724         return self.serialize(self.inputs, self.outputs, for_sig = i)
725
726
727     def hash(self):
728         return Hash(self.raw.decode('hex') )[::-1].encode('hex')
729
730     def sign(self, private_keys):
731         import deserialize
732
733         for i in range(len(self.inputs)):
734             txin = self.inputs[i]
735             tx_for_sig = self.serialize( self.inputs, self.outputs, for_sig = i )
736
737             if txin.get('redeemScript'):
738                 # 1 parse the redeem script
739                 num, redeem_pubkeys = deserialize.parse_redeemScript(txin.get('redeemScript'))
740                 self.inputs[i]["pubkeys"] = redeem_pubkeys
741
742                 # build list of public/private keys
743                 keypairs = {}
744                 for sec in private_keys.values():
745                     compressed = is_compressed(sec)
746                     pkey = regenerate_key(sec)
747                     pubkey = GetPubKey(pkey.pubkey, compressed)
748                     keypairs[ pubkey.encode('hex') ] = sec
749
750                 # list of already existing signatures
751                 signatures = txin.get("signatures",[])
752                 print_error("signatures",signatures)
753
754                 for pubkey in redeem_pubkeys:
755                     public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1)
756                     for s in signatures:
757                         try:
758                             public_key.verify_digest( s.decode('hex')[:-1], Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
759                             break
760                         except ecdsa.keys.BadSignatureError:
761                             continue
762                     else:
763                         # check if we have a key corresponding to the redeem script
764                         if pubkey in keypairs.keys():
765                             # add signature
766                             sec = keypairs[pubkey]
767                             compressed = is_compressed(sec)
768                             pkey = regenerate_key(sec)
769                             secexp = pkey.secret
770                             private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
771                             public_key = private_key.get_verifying_key()
772                             sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
773                             assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
774                             signatures.append( sig.encode('hex') )
775                         
776                 # for p2sh, pubkeysig is a tuple (may be incomplete)
777                 self.inputs[i]["signatures"] = signatures
778                 print_error("signatures",signatures)
779                 self.is_complete = len(signatures) == num
780
781             else:
782                 sec = private_keys[txin['address']]
783                 compressed = is_compressed(sec)
784                 pkey = regenerate_key(sec)
785                 secexp = pkey.secret
786
787                 private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
788                 public_key = private_key.get_verifying_key()
789                 pkey = EC_KEY(secexp)
790                 pubkey = GetPubKey(pkey.pubkey, compressed)
791                 sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
792                 assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
793
794                 self.inputs[i]["pubkeysig"] = [(pubkey, sig)]
795                 self.is_complete = True
796
797         self.raw = self.serialize( self.inputs, self.outputs )
798
799
800     def deserialize(self):
801         import deserialize
802         vds = deserialize.BCDataStream()
803         vds.write(self.raw.decode('hex'))
804         self.d = deserialize.parse_Transaction(vds)
805         return self.d
806     
807
808     def has_address(self, addr):
809         found = False
810         for txin in self.inputs:
811             if addr == txin.get('address'): 
812                 found = True
813                 break
814         for txout in self.outputs:
815             if addr == txout[0]:
816                 found = True
817                 break
818         return found
819
820
821     def get_value(self, addresses, prevout_values):
822         # return the balance for that tx
823         is_relevant = False
824         is_send = False
825         is_pruned = False
826         is_partial = False
827         v_in = v_out = v_out_mine = 0
828
829         for item in self.inputs:
830             addr = item.get('address')
831             if addr in addresses:
832                 is_send = True
833                 is_relevant = True
834                 key = item['prevout_hash']  + ':%d'%item['prevout_n']
835                 value = prevout_values.get( key )
836                 if value is None:
837                     is_pruned = True
838                 else:
839                     v_in += value
840             else:
841                 is_partial = True
842
843         if not is_send: is_partial = False
844                     
845         for item in self.outputs:
846             addr, value = item
847             v_out += value
848             if addr in addresses:
849                 v_out_mine += value
850                 is_relevant = True
851
852         if is_pruned:
853             # some inputs are mine:
854             fee = None
855             if is_send:
856                 v = v_out_mine - v_out
857             else:
858                 # no input is mine
859                 v = v_out_mine
860
861         else:
862             v = v_out_mine - v_in
863
864             if is_partial:
865                 # some inputs are mine, but not all
866                 fee = None
867                 is_send = v < 0
868             else:
869                 # all inputs are mine
870                 fee = v_out - v_in
871
872         return is_relevant, is_send, v, fee
873
874     def as_dict(self):
875         import json
876         out = {
877             "hex":self.raw,
878             "complete":self.is_complete
879             }
880         if not self.is_complete:
881             extras = []
882             for i in self.inputs:
883                 e = { 'txid':i['tx_hash'], 'vout':i['index'],
884                       'scriptPubKey':i.get('raw_output_script'),
885                       'KeyID':i.get('KeyID'),
886                       'redeemScript':i.get('redeemScript'),
887                       'signatures':i.get('signatures'),
888                       'pubkeys':i.get('pubkeys'),
889                       }
890                 extras.append(e)
891             self.input_info = extras
892
893             if self.input_info:
894                 out['input_info'] = json.dumps(self.input_info).replace(' ','')
895
896         return out
897
898
899     def requires_fee(self, verifier):
900         # see https://en.bitcoin.it/wiki/Transaction_fees
901         threshold = 57600000
902         size = len(self.raw)/2
903         if size >= 10000: 
904             return True
905
906         for o in self.outputs:
907             value = o[1]
908             if value < 1000000:
909                 return True
910         sum = 0
911         for i in self.inputs:
912             age = verifier.get_confirmations(i["tx_hash"])[0]
913             sum += i["value"] * age
914         priority = sum / size
915         print_error(priority, threshold)
916         return priority < threshold 
917
918
919
920
921 def test_bip32(seed, sequence):
922     """
923     run a test vector,
924     see https://en.bitcoin.it/wiki/BIP_0032_TestVectors
925     """
926
927     master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
928         
929     print "secret key", master_secret.encode('hex')
930     print "chain code", master_chain.encode('hex')
931
932     key_id = hash_160(master_public_key_compressed)
933     print "keyid", key_id.encode('hex')
934     print "base58"
935     print "address", hash_160_to_bc_address(key_id)
936     print "secret key", SecretToASecret(master_secret, True)
937
938     k = master_secret
939     c = master_chain
940
941     s = ['m']
942     for n in sequence.split('/'):
943         s.append(n)
944         print "Chain [%s]" % '/'.join(s)
945         
946         n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
947         k0, c0 = CKD(k, c, n)
948         K0, K0_compressed = get_pubkeys_from_secret(k0)
949
950         print "* Identifier"
951         print "  * (main addr)", hash_160_to_bc_address(hash_160(K0_compressed))
952
953         print "* Secret Key"
954         print "  * (hex)", k0.encode('hex')
955         print "  * (wif)", SecretToASecret(k0, True)
956
957         print "* Chain Code"
958         print "   * (hex)", c0.encode('hex')
959
960         k = k0
961         c = c0
962     print "----"
963
964         
965
966
967 if __name__ == '__main__':
968     test_bip32("000102030405060708090a0b0c0d0e0f", "0'/1/2'/2/1000000000")
969     test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","0/2147483647'/1/2147483646'/2")
970