accounts
[electrum-nvc.git] / lib / bitcoin.py
1 #!/usr/bin/env python
2 #
3 # Electrum - lightweight Bitcoin client
4 # Copyright (C) 2011 thomasv@gitorious
5 #
6 # This program is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.
10 #
11 # This program is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see <http://www.gnu.org/licenses/>.
18
19
20 import hashlib, base64, ecdsa, re
21 from util import print_error
22
23 def rev_hex(s):
24     return s.decode('hex')[::-1].encode('hex')
25
26 def int_to_hex(i, length=1):
27     s = hex(i)[2:].rstrip('L')
28     s = "0"*(2*length - len(s)) + s
29     return rev_hex(s)
30
31 def var_int(i):
32     # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
33     if i<0xfd:
34         return int_to_hex(i)
35     elif i<=0xffff:
36         return "fd"+int_to_hex(i,2)
37     elif i<=0xffffffff:
38         return "fe"+int_to_hex(i,4)
39     else:
40         return "ff"+int_to_hex(i,8)
41
42 def op_push(i):
43     if i<0x4c:
44         return int_to_hex(i)
45     elif i<0xff:
46         return '4c' + int_to_hex(i)
47     elif i<0xffff:
48         return '4d' + int_to_hex(i,2)
49     else:
50         return '4e' + int_to_hex(i,4)
51     
52
53
54 Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
55 hash_encode = lambda x: x[::-1].encode('hex')
56 hash_decode = lambda x: x.decode('hex')[::-1]
57
58
59 # pywallet openssl private key implementation
60
61 def i2d_ECPrivateKey(pkey, compressed=False):
62     if compressed:
63         key = '3081d30201010420' + \
64               '%064x' % pkey.secret + \
65               'a081a53081a2020101302c06072a8648ce3d0101022100' + \
66               '%064x' % _p + \
67               '3006040100040107042102' + \
68               '%064x' % _Gx + \
69               '022100' + \
70               '%064x' % _r + \
71               '020101a124032200'
72     else:
73         key = '308201130201010420' + \
74               '%064x' % pkey.secret + \
75               'a081a53081a2020101302c06072a8648ce3d0101022100' + \
76               '%064x' % _p + \
77               '3006040100040107044104' + \
78               '%064x' % _Gx + \
79               '%064x' % _Gy + \
80               '022100' + \
81               '%064x' % _r + \
82               '020101a144034200'
83         
84     return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
85     
86 def i2o_ECPublicKey(pubkey, compressed=False):
87     # public keys are 65 bytes long (520 bits)
88     # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
89     # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
90     # compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
91     if compressed:
92         if pubkey.point.y() & 1:
93             key = '03' + '%064x' % pubkey.point.x()
94         else:
95             key = '02' + '%064x' % pubkey.point.x()
96     else:
97         key = '04' + \
98               '%064x' % pubkey.point.x() + \
99               '%064x' % pubkey.point.y()
100             
101     return key.decode('hex')
102             
103 # end pywallet openssl private key implementation
104
105                                                 
106             
107 ############ functions from pywallet ##################### 
108
109 def hash_160(public_key):
110     try:
111         md = hashlib.new('ripemd160')
112         md.update(hashlib.sha256(public_key).digest())
113         return md.digest()
114     except:
115         import ripemd
116         md = ripemd.new(hashlib.sha256(public_key).digest())
117         return md.digest()
118
119
120 def public_key_to_bc_address(public_key):
121     h160 = hash_160(public_key)
122     return hash_160_to_bc_address(h160)
123
124 def hash_160_to_bc_address(h160, addrtype = 0):
125     vh160 = chr(addrtype) + h160
126     h = Hash(vh160)
127     addr = vh160 + h[0:4]
128     return b58encode(addr)
129
130 def bc_address_to_hash_160(addr):
131     bytes = b58decode(addr, 25)
132     return ord(bytes[0]), bytes[1:21]
133
134 def encode_point(pubkey, compressed=False):
135     order = generator_secp256k1.order()
136     p = pubkey.pubkey.point
137     x_str = ecdsa.util.number_to_string(p.x(), order)
138     y_str = ecdsa.util.number_to_string(p.y(), order)
139     if compressed:
140         return chr(2 + (p.y() & 1)) + x_str
141     else:
142         return chr(4) + pubkey.to_string() #x_str + y_str
143
144 __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
145 __b58base = len(__b58chars)
146
147 def b58encode(v):
148     """ encode v, which is a string of bytes, to base58."""
149
150     long_value = 0L
151     for (i, c) in enumerate(v[::-1]):
152         long_value += (256**i) * ord(c)
153
154     result = ''
155     while long_value >= __b58base:
156         div, mod = divmod(long_value, __b58base)
157         result = __b58chars[mod] + result
158         long_value = div
159     result = __b58chars[long_value] + result
160
161     # Bitcoin does a little leading-zero-compression:
162     # leading 0-bytes in the input become leading-1s
163     nPad = 0
164     for c in v:
165         if c == '\0': nPad += 1
166         else: break
167
168     return (__b58chars[0]*nPad) + result
169
170 def b58decode(v, length):
171     """ decode v into a string of len bytes."""
172     long_value = 0L
173     for (i, c) in enumerate(v[::-1]):
174         long_value += __b58chars.find(c) * (__b58base**i)
175
176     result = ''
177     while long_value >= 256:
178         div, mod = divmod(long_value, 256)
179         result = chr(mod) + result
180         long_value = div
181     result = chr(long_value) + result
182
183     nPad = 0
184     for c in v:
185         if c == __b58chars[0]: nPad += 1
186         else: break
187
188     result = chr(0)*nPad + result
189     if length is not None and len(result) != length:
190         return None
191
192     return result
193
194
195 def EncodeBase58Check(vchIn):
196     hash = Hash(vchIn)
197     return b58encode(vchIn + hash[0:4])
198
199 def DecodeBase58Check(psz):
200     vchRet = b58decode(psz, None)
201     key = vchRet[0:-4]
202     csum = vchRet[-4:]
203     hash = Hash(key)
204     cs32 = hash[0:4]
205     if cs32 != csum:
206         return None
207     else:
208         return key
209
210 def PrivKeyToSecret(privkey):
211     return privkey[9:9+32]
212
213 def SecretToASecret(secret, compressed=False, addrtype=0):
214     vchIn = chr((addrtype+128)&255) + secret
215     if compressed: vchIn += '\01'
216     return EncodeBase58Check(vchIn)
217
218 def ASecretToSecret(key, addrtype=0):
219     vch = DecodeBase58Check(key)
220     if vch and vch[0] == chr((addrtype+128)&255):
221         return vch[1:]
222     else:
223         return False
224
225 def regenerate_key(sec):
226     b = ASecretToSecret(sec)
227     if not b:
228         return False
229     b = b[0:32]
230     secret = int('0x' + b.encode('hex'), 16)
231     return EC_KEY(secret)
232
233 def GetPubKey(pubkey, compressed=False):
234     return i2o_ECPublicKey(pubkey, compressed)
235
236 def GetPrivKey(pkey, compressed=False):
237     return i2d_ECPrivateKey(pkey, compressed)
238
239 def GetSecret(pkey):
240     return ('%064x' % pkey.secret).decode('hex')
241
242 def is_compressed(sec):
243     b = ASecretToSecret(sec)
244     return len(b) == 33
245
246
247 def address_from_private_key(sec):
248     # rebuild public key from private key, compressed or uncompressed
249     pkey = regenerate_key(sec)
250     assert pkey
251
252     # figure out if private key is compressed
253     compressed = is_compressed(sec)
254         
255     # rebuild private and public key from regenerated secret
256     private_key = GetPrivKey(pkey, compressed)
257     public_key = GetPubKey(pkey.pubkey, compressed)
258     address = public_key_to_bc_address(public_key)
259     return address
260
261
262 def is_valid(addr):
263     ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
264     if not ADDRESS_RE.match(addr): return False
265     try:
266         addrtype, h = bc_address_to_hash_160(addr)
267     except:
268         return False
269     return addr == hash_160_to_bc_address(h, addrtype)
270
271
272 ########### end pywallet functions #######################
273
274 # secp256k1, http://www.oid-info.com/get/1.3.132.0.10
275 _p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
276 _r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
277 _b = 0x0000000000000000000000000000000000000000000000000000000000000007L
278 _a = 0x0000000000000000000000000000000000000000000000000000000000000000L
279 _Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
280 _Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
281 curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
282 generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
283 oid_secp256k1 = (1,3,132,0,10)
284 SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 ) 
285
286 from ecdsa.util import string_to_number, number_to_string
287
288 def msg_magic(message):
289     return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
290
291
292 class EC_KEY(object):
293     def __init__( self, secret ):
294         self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
295         self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
296         self.secret = secret
297
298     def sign_message(self, message, compressed, address):
299         private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
300         public_key = private_key.get_verifying_key()
301         signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
302         assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
303         for i in range(4):
304             sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
305             try:
306                 self.verify_message( address, sig, message)
307                 return sig
308             except:
309                 continue
310         else:
311             raise BaseException("error: cannot sign message")
312
313     @classmethod
314     def verify_message(self, address, signature, message):
315         """ See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
316         from ecdsa import numbertheory, ellipticcurve, util
317         import msqr
318         curve = curve_secp256k1
319         G = generator_secp256k1
320         order = G.order()
321         # extract r,s from signature
322         sig = base64.b64decode(signature)
323         if len(sig) != 65: raise BaseException("Wrong encoding")
324         r,s = util.sigdecode_string(sig[1:], order)
325         nV = ord(sig[0])
326         if nV < 27 or nV >= 35:
327             raise BaseException("Bad encoding")
328         if nV >= 31:
329             compressed = True
330             nV -= 4
331         else:
332             compressed = False
333
334         recid = nV - 27
335         # 1.1
336         x = r + (recid/2) * order
337         # 1.3
338         alpha = ( x * x * x  + curve.a() * x + curve.b() ) % curve.p()
339         beta = msqr.modular_sqrt(alpha, curve.p())
340         y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
341         # 1.4 the constructor checks that nR is at infinity
342         R = ellipticcurve.Point(curve, x, y, order)
343         # 1.5 compute e from message:
344         h = Hash( msg_magic(message) )
345         e = string_to_number(h)
346         minus_e = -e % order
347         # 1.6 compute Q = r^-1 (sR - eG)
348         inv_r = numbertheory.inverse_mod(r,order)
349         Q = inv_r * ( s * R + minus_e * G )
350         public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
351         # check that Q is the public key
352         public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
353         # check that we get the original signing address
354         addr = public_key_to_bc_address( encode_point(public_key, compressed) )
355         if address != addr:
356             raise BaseException("Bad signature")
357
358
359 ###################################### BIP32 ##############################
360
361 random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
362
363
364
365 def bip32_init(seed):
366     import hmac
367         
368     I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
369
370     print "seed", seed.encode('hex')
371     master_secret = I[0:32]
372     master_chain = I[32:]
373
374     # public key
375     curve = SECP256k1
376     master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 )
377     master_public_key = master_private_key.get_verifying_key()
378     K = master_public_key.to_string()
379     K_compressed = GetPubKey(master_public_key.pubkey,True)
380     return master_secret, master_chain, K, K_compressed
381
382     
383 def CKD(k, c, n):
384     import hmac
385     from ecdsa.util import string_to_number, number_to_string
386     order = generator_secp256k1.order()
387     keypair = EC_KEY(string_to_number(k))
388     K = GetPubKey(keypair.pubkey,True)
389     I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
390     k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order )
391     c_n = I[32:]
392     return k_n, c_n
393
394
395 def CKD_prime(K, c, n):
396     import hmac
397     from ecdsa.util import string_to_number, number_to_string
398     order = generator_secp256k1.order()
399
400     K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
401     K_compressed = GetPubKey(K_public_key.pubkey,True)
402
403     I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
404
405     #pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point )
406     public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 )
407     K_n = public_key.to_string()
408     K_n_compressed = GetPubKey(public_key.pubkey,True)
409     c_n = I[32:]
410
411     return K_n, K_n_compressed, c_n
412
413
414
415 class DeterministicSequence:
416     """  Privatekey(type,n) = Master_private_key + H(n|S|type)  """
417
418     def __init__(self, master_public_key, mpk2 = None):
419         self.master_public_key = master_public_key
420         if mpk2:
421             self.mpk2 = mpk2
422             self.is_p2sh = True
423         else:
424             self.is_p2sh = False
425
426     @classmethod
427     def from_seed(klass, seed):
428         curve = SECP256k1
429         secexp = klass.stretch_key(seed)
430         master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
431         master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
432         self = klass(master_public_key)
433         return self
434
435     @classmethod
436     def stretch_key(self,seed):
437         oldseed = seed
438         for i in range(100000):
439             seed = hashlib.sha256(seed + oldseed).digest()
440         return string_to_number( seed )
441
442     def get_sequence(self, n, for_change):
443         return string_to_number( Hash( "%d:%d:"%(n,for_change) + self.master_public_key.decode('hex') ) )
444
445     def get_address(self, for_change, n):
446         if not self.is_p2sh:
447             pubkey = self.get_pubkey(n, for_change)
448             address = public_key_to_bc_address( pubkey.decode('hex') )
449         else:
450             pubkey1 = self.get_pubkey(n, for_change)
451             pubkey2 = self.get_pubkey2(n, for_change)
452             address = Transaction.multisig_script([pubkey1, pubkey2], 2)["address"]
453         return address
454
455     #sec = self.p2sh_sequence.get_private_key(n, for_change, seed)
456     #addr = hash_160_to_bc_address(hash_160(txin["redeemScript"].decode('hex')), 5)
457
458     def get_pubkey2(self, n, for_change):
459         curve = SECP256k1
460         z = string_to_number( Hash( "%d:%d:"%(n, for_change) + self.mpk2.decode('hex') ) )
461         master_public_key = ecdsa.VerifyingKey.from_string( self.mpk2.decode('hex'), curve = SECP256k1 )
462         pubkey_point = master_public_key.pubkey.point + z*curve.generator
463         public_key2 = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
464         return '04' + public_key2.to_string().encode('hex')
465
466     def get_pubkey(self, n, for_change):
467         curve = SECP256k1
468         z = self.get_sequence(n, for_change)
469         master_public_key = ecdsa.VerifyingKey.from_string( self.master_public_key.decode('hex'), curve = SECP256k1 )
470         pubkey_point = master_public_key.pubkey.point + z*curve.generator
471         public_key2 = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
472         return '04' + public_key2.to_string().encode('hex')
473
474     def get_private_key_from_stretched_exponent(self, n, for_change, secexp):
475         order = generator_secp256k1.order()
476         secexp = ( secexp + self.get_sequence(n,for_change) ) % order
477         pk = number_to_string( secexp, generator_secp256k1.order() )
478         compressed = False
479         return SecretToASecret( pk, compressed )
480         
481     def get_private_key(self, n, for_change, seed):
482         secexp = self.stretch_key(seed)
483         return self.get_private_key_from_stretched_exponent(n, for_change, secexp)
484
485     def check_seed(self, seed):
486         curve = SECP256k1
487         secexp = self.stretch_key(seed)
488         master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
489         master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
490         if master_public_key != self.master_public_key:
491             print_error('invalid password (mpk)')
492             raise BaseException('Invalid password')
493
494         return True
495
496
497     def add_input_info(self, txin, account, is_change, n):
498
499         txin['electrumKeyID'] = (account, is_change, n) # used by the server to find the key
500         if not self.p2sh:
501             txin['pubkeysig'] = [(None, None)]
502             pk_addr = txin['address']
503         else:
504             pubkey1 = self.get_pubkey(n, is_change)
505             pubkey2 = self.get_pubkey2(n, is_change)
506             pk_addr = public_key_to_bc_address( pubkey1.decode('hex') ) # we need to return that address to get the right private key
507             txin['redeemScript'] = Transaction.multisig_script([pubkey1, pubkey2], 2)['redeemScript']
508         return pk_addr
509
510
511
512
513 ################################## transactions
514
515
516 class Transaction:
517     
518     def __init__(self, raw):
519         self.raw = raw
520         self.deserialize()
521         self.inputs = self.d['inputs']
522         self.outputs = self.d['outputs']
523         self.outputs = map(lambda x: (x['address'],x['value']), self.outputs)
524         self.input_info = None
525         self.is_complete = True
526         
527     @classmethod
528     def from_io(klass, inputs, outputs):
529         raw = klass.serialize(inputs, outputs, for_sig = -1) # for_sig=-1 means do not sign
530         self = klass(raw)
531         self.is_complete = False
532         self.inputs = inputs
533         self.outputs = outputs
534         extras = []
535         for i in self.inputs:
536             e = { 'txid':i['tx_hash'], 'vout':i['index'], 'scriptPubKey':i.get('raw_output_script') }
537             extras.append(e)
538         self.input_info = extras
539         return self
540
541     def __str__(self):
542         return self.raw
543
544     @classmethod
545     def multisig_script(klass, public_keys, num=None):
546         n = len(public_keys)
547         if num is None: num = n
548         # supports only "2 of 2", and "2 of 3" transactions
549         assert num <= n and n in [2,3]
550     
551         if num==2:
552             s = '52'
553         elif num == 3:
554             s = '53'
555         else:
556             raise
557     
558         for k in public_keys:
559             s += var_int(len(k)/2)
560             s += k
561         if n==2:
562             s += '52'
563         elif n==3:
564             s += '53'
565         else:
566             raise
567         s += 'ae'
568
569         out = { "address": hash_160_to_bc_address(hash_160(s.decode('hex')), 5), "redeemScript":s }
570         return out
571
572     @classmethod
573     def serialize( klass, inputs, outputs, for_sig = None ):
574
575         s  = int_to_hex(1,4)                                         # version
576         s += var_int( len(inputs) )                                  # number of inputs
577         for i in range(len(inputs)):
578             txin = inputs[i]
579             s += txin['tx_hash'].decode('hex')[::-1].encode('hex')   # prev hash
580             s += int_to_hex(txin['index'],4)                         # prev index
581
582             if for_sig is None:
583                 pubkeysig = txin.get('pubkeysig')
584                 if pubkeysig:
585                     pubkey, sig = pubkeysig[0]
586                     sig = sig + chr(1)                               # hashtype
587                     script  = op_push( len(sig))
588                     script += sig.encode('hex')
589                     script += op_push( len(pubkey))
590                     script += pubkey.encode('hex')
591                 else:
592                     signatures = txin['signatures']
593                     pubkeys = txin['pubkeys']
594                     script = '00'                                    # op_0
595                     for sig in signatures:
596                         sig = sig + '01'
597                         script += op_push(len(sig)/2)
598                         script += sig
599
600                     redeem_script = klass.multisig_script(pubkeys,2).get('redeemScript')
601                     script += op_push(len(redeem_script)/2)
602                     script += redeem_script
603
604             elif for_sig==i:
605                 if txin.get('redeemScript'):
606                     script = txin['redeemScript']                    # p2sh uses the inner script
607                 else:
608                     script = txin['raw_output_script']               # scriptsig
609             else:
610                 script=''
611             s += var_int( len(script)/2 )                            # script length
612             s += script
613             s += "ffffffff"                                          # sequence
614
615         s += var_int( len(outputs) )                                 # number of outputs
616         for output in outputs:
617             addr, amount = output
618             s += int_to_hex( amount, 8)                              # amount
619             addrtype, hash_160 = bc_address_to_hash_160(addr)
620             if addrtype == 0:
621                 script = '76a9'                                      # op_dup, op_hash_160
622                 script += '14'                                       # push 0x14 bytes
623                 script += hash_160.encode('hex')
624                 script += '88ac'                                     # op_equalverify, op_checksig
625             elif addrtype == 5:
626                 script = 'a9'                                        # op_hash_160
627                 script += '14'                                       # push 0x14 bytes
628                 script += hash_160.encode('hex')
629                 script += '87'                                       # op_equal
630             else:
631                 raise
632             
633             s += var_int( len(script)/2 )                           #  script length
634             s += script                                             #  script
635         s += int_to_hex(0,4)                                        #  lock time
636         if for_sig is not None and for_sig != -1:
637             s += int_to_hex(1, 4)                                   #  hash type
638         return s
639
640
641     def for_sig(self,i):
642         return self.serialize(self.inputs, self.outputs, for_sig = i)
643
644
645     def hash(self):
646         return Hash(self.raw.decode('hex') )[::-1].encode('hex')
647
648     def sign(self, private_keys):
649         import deserialize
650
651         for i in range(len(self.inputs)):
652             txin = self.inputs[i]
653             tx_for_sig = self.serialize( self.inputs, self.outputs, for_sig = i )
654
655             if txin.get('redeemScript'):
656                 # 1 parse the redeem script
657                 num, redeem_pubkeys = deserialize.parse_redeemScript(txin.get('redeemScript'))
658                 self.inputs[i]["pubkeys"] = redeem_pubkeys
659
660                 # build list of public/private keys
661                 keypairs = {}
662                 for sec in private_keys.values():
663                     compressed = is_compressed(sec)
664                     pkey = regenerate_key(sec)
665                     pubkey = GetPubKey(pkey.pubkey, compressed)
666                     keypairs[ pubkey.encode('hex') ] = sec
667
668                 # list of already existing signatures
669                 signatures = txin.get("signatures",[])
670                 print_error("signatures",signatures)
671
672                 for pubkey in redeem_pubkeys:
673                     public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1)
674                     for s in signatures:
675                         try:
676                             public_key.verify_digest( s.decode('hex')[:-1], Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
677                             break
678                         except ecdsa.keys.BadSignatureError:
679                             continue
680                     else:
681                         # check if we have a key corresponding to the redeem script
682                         if pubkey in keypairs.keys():
683                             # add signature
684                             sec = keypairs[pubkey]
685                             compressed = is_compressed(sec)
686                             pkey = regenerate_key(sec)
687                             secexp = pkey.secret
688                             private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
689                             public_key = private_key.get_verifying_key()
690                             sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
691                             assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
692                             signatures.append( sig.encode('hex') )
693                         
694                 # for p2sh, pubkeysig is a tuple (may be incomplete)
695                 self.inputs[i]["signatures"] = signatures
696                 print_error("signatures",signatures)
697                 self.is_complete = len(signatures) == num
698
699             else:
700                 sec = private_keys[txin['address']]
701                 compressed = is_compressed(sec)
702                 pkey = regenerate_key(sec)
703                 secexp = pkey.secret
704
705                 private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
706                 public_key = private_key.get_verifying_key()
707                 pkey = EC_KEY(secexp)
708                 pubkey = GetPubKey(pkey.pubkey, compressed)
709                 sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
710                 assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
711
712                 self.inputs[i]["pubkeysig"] = [(pubkey, sig)]
713                 self.is_complete = True
714
715         self.raw = self.serialize( self.inputs, self.outputs )
716
717
718     def deserialize(self):
719         import deserialize
720         vds = deserialize.BCDataStream()
721         vds.write(self.raw.decode('hex'))
722         self.d = deserialize.parse_Transaction(vds)
723         return self.d
724     
725
726     def has_address(self, addr):
727         found = False
728         for txin in self.inputs:
729             if addr == txin.get('address'): 
730                 found = True
731                 break
732         for txout in self.outputs:
733             if addr == txout[0]:
734                 found = True
735                 break
736         return found
737
738
739     def get_value(self, addresses, prevout_values):
740         # return the balance for that tx
741         is_send = False
742         is_pruned = False
743         v_in = v_out = v_out_mine = 0
744
745         for item in self.inputs:
746             addr = item.get('address')
747             if addr in addresses:
748                 is_send = True
749                 key = item['prevout_hash']  + ':%d'%item['prevout_n']
750                 value = prevout_values.get( key )
751                 if value is None:
752                     is_pruned = True
753                 else:
754                     v_in += value
755             else:
756                 is_pruned = True
757                     
758         for item in self.outputs:
759             addr, value = item
760             v_out += value
761             if addr in addresses:
762                 v_out_mine += value
763
764         if not is_pruned:
765             # all inputs are mine:
766             fee = v_out - v_in
767             v = v_out_mine - v_in
768         else:
769             # some inputs are mine:
770             fee = None
771             if is_send:
772                 v = v_out_mine - v_out
773             else:
774                 # no input is mine
775                 v = v_out_mine
776             
777         return is_send, v, fee
778
779     def as_dict(self):
780         import json
781         out = {
782             "hex":self.raw,
783             "complete":self.is_complete
784             }
785         if not self.is_complete:
786             extras = []
787             for i in self.inputs:
788                 e = { 'txid':i['tx_hash'], 'vout':i['index'],
789                       'scriptPubKey':i.get('raw_output_script'),
790                       'electrumKeyID':i.get('electrumKeyID'),
791                       'redeemScript':i.get('redeemScript'),
792                       'signatures':i.get('signatures'),
793                       'pubkeys':i.get('pubkeys'),
794                       }
795                 extras.append(e)
796             self.input_info = extras
797
798             if self.input_info:
799                 out['input_info'] = json.dumps(self.input_info).replace(' ','')
800
801
802         print "out", out
803         return out
804
805
806 def test_bip32():
807     seed = "ff000000000000000000000000000000".decode('hex')
808     master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
809         
810     print "secret key", master_secret.encode('hex')
811     print "chain code", master_chain.encode('hex')
812
813     key_id = hash_160(master_public_key_compressed)
814     print "keyid", key_id.encode('hex')
815     print "base58"
816     print "address", hash_160_to_bc_address(key_id)
817     print "secret key", SecretToASecret(master_secret, True)
818
819     print "-- m/0 --"
820     k0, c0 = CKD(master_secret, master_chain, 0)
821     print "secret", k0.encode('hex')
822     print "chain", c0.encode('hex')
823     print "secret key", SecretToASecret(k0, True)
824     
825     K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0)
826     print "address", hash_160_to_bc_address(hash_160(K0_compressed))
827     
828     print "-- m/0/1 --"
829     K01, K01_compressed, c01 = CKD_prime(K0, c0, 1)
830     print "address", hash_160_to_bc_address(hash_160(K01_compressed))
831     
832     print "-- m/0/1/3 --"
833     K013, K013_compressed, c013 = CKD_prime(K01, c01, 3)
834     print "address", hash_160_to_bc_address(hash_160(K013_compressed))
835     
836     print "-- m/0/1/3/7 --"
837     K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7)
838     print "address", hash_160_to_bc_address(hash_160(K0137_compressed))
839         
840
841
842 if __name__ == '__main__':
843     test_bip32()
844
845