Made all bip32 primitives testnet compatible.
[electrum-nvc.git] / lib / bitcoin.py
index a4c30fe..af0a6ed 100644 (file)
@@ -1,3 +1,4 @@
+# -*- coding: utf-8 -*-
 #!/usr/bin/env python
 #
 # Electrum - lightweight Bitcoin client
 # You should have received a copy of the GNU General Public License
 # along with this program. If not, see <http://www.gnu.org/licenses/>.
 
+import hashlib
+import base64
+import re
+import sys
+import hmac
 
-import hashlib, base64, ecdsa, re
 from util import print_error
+from version import SEED_PREFIX
+
+try:
+    import ecdsa
+except ImportError:
+    sys.exit("Error: python-ecdsa does not seem to be installed. Try 'sudo pip install ecdsa'")
+
+try:
+    import aes
+except ImportError:
+    sys.exit("Error: AES does not seem to be installed. Try 'sudo pip install slowaes'")
+
+################################## transactions
+
+MIN_RELAY_TX_FEE = 1000
+
+
+# AES encryption
+EncodeAES = lambda secret, s: base64.b64encode(aes.encryptData(secret,s))
+DecodeAES = lambda secret, e: aes.decryptData(secret, base64.b64decode(e))
+
+
+def pw_encode(s, password):
+    if password:
+        secret = Hash(password)
+        return EncodeAES(secret, s.encode("utf8"))
+    else:
+        return s
+
+
+def pw_decode(s, password):
+    if password is not None:
+        secret = Hash(password)
+        try:
+            d = DecodeAES(secret, s).decode("utf8")
+        except Exception:
+            raise Exception('Invalid password')
+        return d
+    else:
+        return s
+
 
 def rev_hex(s):
     return s.decode('hex')[::-1].encode('hex')
 
+
 def int_to_hex(i, length=1):
     s = hex(i)[2:].rstrip('L')
     s = "0"*(2*length - len(s)) + s
     return rev_hex(s)
 
+
 def var_int(i):
     # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
     if i<0xfd:
@@ -39,6 +87,7 @@ def var_int(i):
     else:
         return "ff"+int_to_hex(i,8)
 
+
 def op_push(i):
     if i<0x4c:
         return int_to_hex(i)
@@ -48,12 +97,47 @@ def op_push(i):
         return '4d' + int_to_hex(i,2)
     else:
         return '4e' + int_to_hex(i,4)
-    
 
 
-Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
+def sha256(x):
+    return hashlib.sha256(x).digest()
+
+
+def Hash(x):
+    if type(x) is unicode: x=x.encode('utf-8')
+    return sha256(sha256(x))
+
+
 hash_encode = lambda x: x[::-1].encode('hex')
 hash_decode = lambda x: x.decode('hex')[::-1]
+hmac_sha_512 = lambda x,y: hmac.new(x, y, hashlib.sha512).digest()
+
+
+def mnemonic_to_seed(mnemonic, passphrase):
+    from pbkdf2 import PBKDF2
+    import hmac
+    PBKDF2_ROUNDS = 2048
+    return PBKDF2(mnemonic, 'mnemonic' + passphrase, iterations = PBKDF2_ROUNDS, macmodule = hmac, digestmodule = hashlib.sha512).read(64)
+
+
+is_new_seed = lambda x: hmac_sha_512("Seed version", x.encode('utf8')).encode('hex')[0:2].startswith(SEED_PREFIX)
+
+def is_old_seed(seed):
+    import mnemonic
+    words = seed.strip().split()
+    try:
+        mnemonic.mn_decode(words)
+        uses_electrum_words = True
+    except Exception:
+        uses_electrum_words = False
+
+    try:
+        seed.decode('hex')
+        is_hex = (len(seed) == 32)
+    except Exception:
+        is_hex = False
+
+    return is_hex or (uses_electrum_words and len(words) == 12)
 
 
 # pywallet openssl private key implementation
@@ -80,9 +164,9 @@ def i2d_ECPrivateKey(pkey, compressed=False):
               '022100' + \
               '%064x' % _r + \
               '020101a144034200'
-        
+
     return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
-    
+
 def i2o_ECPublicKey(pubkey, compressed=False):
     # public keys are 65 bytes long (520 bits)
     # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
@@ -97,23 +181,23 @@ def i2o_ECPublicKey(pubkey, compressed=False):
         key = '04' + \
               '%064x' % pubkey.point.x() + \
               '%064x' % pubkey.point.y()
-            
+
     return key.decode('hex')
-            
+
 # end pywallet openssl private key implementation
 
-                                                
-            
-############ functions from pywallet ##################### 
+
+
+############ functions from pywallet #####################
 
 def hash_160(public_key):
     try:
         md = hashlib.new('ripemd160')
-        md.update(hashlib.sha256(public_key).digest())
+        md.update(sha256(public_key))
         return md.digest()
-    except:
+    except Exception:
         import ripemd
-        md = ripemd.new(hashlib.sha256(public_key).digest())
+        md = ripemd.new(sha256(public_key))
         return md.digest()
 
 
@@ -131,19 +215,11 @@ def bc_address_to_hash_160(addr):
     bytes = b58decode(addr, 25)
     return ord(bytes[0]), bytes[1:21]
 
-def encode_point(pubkey, compressed=False):
-    order = generator_secp256k1.order()
-    p = pubkey.pubkey.point
-    x_str = ecdsa.util.number_to_string(p.x(), order)
-    y_str = ecdsa.util.number_to_string(p.y(), order)
-    if compressed:
-        return chr(2 + (p.y() & 1)) + x_str
-    else:
-        return chr(4) + pubkey.to_string() #x_str + y_str
 
 __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
 __b58base = len(__b58chars)
 
+
 def b58encode(v):
     """ encode v, which is a string of bytes, to base58."""
 
@@ -167,6 +243,7 @@ def b58encode(v):
 
     return (__b58chars[0]*nPad) + result
 
+
 def b58decode(v, length):
     """ decode v into a string of len bytes."""
     long_value = 0L
@@ -196,6 +273,7 @@ def EncodeBase58Check(vchIn):
     hash = Hash(vchIn)
     return b58encode(vchIn + hash[0:4])
 
+
 def DecodeBase58Check(psz):
     vchRet = b58decode(psz, None)
     key = vchRet[0:-4]
@@ -207,9 +285,11 @@ def DecodeBase58Check(psz):
     else:
         return key
 
+
 def PrivKeyToSecret(privkey):
     return privkey[9:9+32]
 
+
 def SecretToASecret(secret, compressed=False, addrtype=0):
     vchIn = chr((addrtype+128)&255) + secret
     if compressed: vchIn += '\01'
@@ -227,18 +307,21 @@ def regenerate_key(sec):
     if not b:
         return False
     b = b[0:32]
-    secret = int('0x' + b.encode('hex'), 16)
-    return EC_KEY(secret)
+    return EC_KEY(b)
+
 
 def GetPubKey(pubkey, compressed=False):
     return i2o_ECPublicKey(pubkey, compressed)
 
+
 def GetPrivKey(pkey, compressed=False):
     return i2d_ECPrivateKey(pkey, compressed)
 
+
 def GetSecret(pkey):
     return ('%064x' % pkey.secret).decode('hex')
 
+
 def is_compressed(sec):
     b = ASecretToSecret(sec)
     return len(b) == 33
@@ -260,71 +343,162 @@ def address_from_private_key(sec):
 
 
 def is_valid(addr):
+    return is_address(addr)
+
+
+def is_address(addr):
     ADDRESS_RE = re.compile('[1-9A-HJ-NP-Za-km-z]{26,}\\Z')
     if not ADDRESS_RE.match(addr): return False
     try:
         addrtype, h = bc_address_to_hash_160(addr)
-    except:
+    except Exception:
         return False
     return addr == hash_160_to_bc_address(h, addrtype)
 
 
+def is_private_key(key):
+    try:
+        k = ASecretToSecret(key)
+        return k is not False
+    except:
+        return False
+
+
 ########### end pywallet functions #######################
 
-# secp256k1, http://www.oid-info.com/get/1.3.132.0.10
-_p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
-_r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
-_b = 0x0000000000000000000000000000000000000000000000000000000000000007L
-_a = 0x0000000000000000000000000000000000000000000000000000000000000000L
-_Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
-_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
-curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
-generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
-oid_secp256k1 = (1,3,132,0,10)
-SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 ) 
+try:
+    from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1
+except Exception:
+    print "cannot import ecdsa.curve_secp256k1. You probably need to upgrade ecdsa.\nTry: sudo pip install --upgrade ecdsa"
+    exit()
 
+from ecdsa.curves import SECP256k1
+from ecdsa.ellipticcurve import Point
 from ecdsa.util import string_to_number, number_to_string
 
 def msg_magic(message):
-    return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
+    varint = var_int(len(message))
+    encoded_varint = "".join([chr(int(varint[i:i+2], 16)) for i in xrange(0, len(varint), 2)])
+    return "\x18Bitcoin Signed Message:\n" + encoded_varint + message
+
+
+def verify_message(address, signature, message):
+    try:
+        EC_KEY.verify_message(address, signature, message)
+        return True
+    except Exception as e:
+        print_error("Verification error: {0}".format(e))
+        return False
+
+
+def encrypt_message(message, pubkey):
+    return EC_KEY.encrypt_message(message, pubkey.decode('hex'))
+
+
+def chunks(l, n):
+    return [l[i:i+n] for i in xrange(0, len(l), n)]
+
+
+def ECC_YfromX(x,curved=curve_secp256k1, odd=True):
+    _p = curved.p()
+    _a = curved.a()
+    _b = curved.b()
+    for offset in range(128):
+        Mx = x + offset
+        My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p
+        My = pow(My2, (_p+1)/4, _p )
+
+        if curved.contains_point(Mx,My):
+            if odd == bool(My&1):
+                return [My,offset]
+            return [_p-My,offset]
+    raise Exception('ECC_YfromX: No Y found')
+
+
+def negative_point(P):
+    return Point( P.curve(), P.x(), -P.y(), P.order() )
+
+
+def point_to_ser(P, comp=True ):
+    if comp:
+        return ( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ).decode('hex')
+    return ( '04'+('%064x'%P.x())+('%064x'%P.y()) ).decode('hex')
+
+
+def ser_to_point(Aser):
+    curve = curve_secp256k1
+    generator = generator_secp256k1
+    _r  = generator.order()
+    assert Aser[0] in ['\x02','\x03','\x04']
+    if Aser[0] == '\x04':
+        return Point( curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r )
+    Mx = string_to_number(Aser[1:])
+    return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0]=='\x03')[0], _r )
+
+
+
+class MyVerifyingKey(ecdsa.VerifyingKey):
+    @classmethod
+    def from_signature(klass, sig, recid, h, curve):
+        """ See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """
+        from ecdsa import util, numbertheory
+        import msqr
+        curveFp = curve.curve
+        G = curve.generator
+        order = G.order()
+        # extract r,s from signature
+        r, s = util.sigdecode_string(sig, order)
+        # 1.1
+        x = r + (recid/2) * order
+        # 1.3
+        alpha = ( x * x * x  + curveFp.a() * x + curveFp.b() ) % curveFp.p()
+        beta = msqr.modular_sqrt(alpha, curveFp.p())
+        y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta
+        # 1.4 the constructor checks that nR is at infinity
+        R = Point(curveFp, x, y, order)
+        # 1.5 compute e from message:
+        e = string_to_number(h)
+        minus_e = -e % order
+        # 1.6 compute Q = r^-1 (sR - eG)
+        inv_r = numbertheory.inverse_mod(r,order)
+        Q = inv_r * ( s * R + minus_e * G )
+        return klass.from_public_point( Q, curve )
 
 
 class EC_KEY(object):
-    def __init__( self, secret ):
+    def __init__( self, k ):
+        secret = string_to_number(k)
         self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
         self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
         self.secret = secret
 
+    def get_public_key(self, compressed=True):
+        return point_to_ser(self.pubkey.point, compressed).encode('hex')
+
     def sign_message(self, message, compressed, address):
         private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
         public_key = private_key.get_verifying_key()
-        signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
+        signature = private_key.sign_digest_deterministic( Hash( msg_magic(message) ), hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string )
         assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
         for i in range(4):
             sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
             try:
                 self.verify_message( address, sig, message)
                 return sig
-            except:
+            except Exception:
                 continue
         else:
-            raise BaseException("error: cannot sign message")
+            raise Exception("error: cannot sign message")
+
 
     @classmethod
     def verify_message(self, address, signature, message):
-        """ See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
-        from ecdsa import numbertheory, ellipticcurve, util
-        import msqr
-        curve = curve_secp256k1
-        G = generator_secp256k1
-        order = G.order()
-        # extract r,s from signature
         sig = base64.b64decode(signature)
-        if len(sig) != 65: raise BaseException("Wrong encoding")
-        r,s = util.sigdecode_string(sig[1:], order)
+        if len(sig) != 65: raise Exception("Wrong encoding")
+
         nV = ord(sig[0])
         if nV < 27 or nV >= 35:
-            raise BaseException("Bad encoding")
+            raise Exception("Bad encoding")
         if nV >= 31:
             compressed = True
             nV -= 4
@@ -332,50 +506,85 @@ class EC_KEY(object):
             compressed = False
 
         recid = nV - 27
-        # 1.1
-        x = r + (recid/2) * order
-        # 1.3
-        alpha = ( x * x * x  + curve.a() * x + curve.b() ) % curve.p()
-        beta = msqr.modular_sqrt(alpha, curve.p())
-        y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
-        # 1.4 the constructor checks that nR is at infinity
-        R = ellipticcurve.Point(curve, x, y, order)
-        # 1.5 compute e from message:
         h = Hash( msg_magic(message) )
-        e = string_to_number(h)
-        minus_e = -e % order
-        # 1.6 compute Q = r^-1 (sR - eG)
-        inv_r = numbertheory.inverse_mod(r,order)
-        Q = inv_r * ( s * R + minus_e * G )
-        public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
-        # check that Q is the public key
+        public_key = MyVerifyingKey.from_signature( sig[1:], recid, h, curve = SECP256k1 )
+
+        # check public key
         public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
+
         # check that we get the original signing address
-        addr = public_key_to_bc_address( encode_point(public_key, compressed) )
+        addr = public_key_to_bc_address( point_to_ser(public_key.pubkey.point, compressed) )
         if address != addr:
-            raise BaseException("Bad signature")
+            raise Exception("Bad signature")
 
 
-###################################### BIP32 ##############################
+    # ecies encryption/decryption methods; aes-256-cbc is used as the cipher; hmac-sha256 is used as the mac
 
-random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
-BIP32_PRIME = 0x80000000
+    @classmethod
+    def encrypt_message(self, message, pubkey):
 
-def bip32_init(seed):
-    import hmac
-    seed = seed.decode('hex')        
-    I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
+        pk = ser_to_point(pubkey)
+        if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()):
+            raise Exception('invalid pubkey')
+
+        ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order())
+        ephemeral = EC_KEY(ephemeral_exponent)
+
+        ecdh_key = (pk * ephemeral.privkey.secret_multiplier).x()
+        ecdh_key = ('%064x' % ecdh_key).decode('hex')
+        key = hashlib.sha512(ecdh_key).digest()
+        key_e, key_m = key[:32], key[32:]
+
+        iv_ciphertext = aes.encryptData(key_e, message)
+
+        ephemeral_pubkey = ephemeral.get_public_key(compressed=True).decode('hex')
+        encrypted = 'BIE1' + ephemeral_pubkey + iv_ciphertext
+        mac = hmac.new(key_m, encrypted, hashlib.sha256).digest()
+
+        return base64.b64encode(encrypted + mac)
+
+
+    def decrypt_message(self, encrypted):
+
+        encrypted = base64.b64decode(encrypted)
+
+        if len(encrypted) < 85:
+            raise Exception('invalid ciphertext: length')
+
+        magic = encrypted[:4]
+        ephemeral_pubkey = encrypted[4:37]
+        iv_ciphertext = encrypted[37:-32]
+        mac = encrypted[-32:]
 
-    master_secret = I[0:32]
-    master_chain = I[32:]
+        if magic != 'BIE1':
+            raise Exception('invalid ciphertext: invalid magic bytes')
 
-    K, K_compressed = get_pubkeys_from_secret(master_secret)
-    return master_secret, master_chain, K, K_compressed
+        try:
+            ephemeral_pubkey = ser_to_point(ephemeral_pubkey)
+        except AssertionError, e:
+            raise Exception('invalid ciphertext: invalid ephemeral pubkey')
+
+        if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(), ephemeral_pubkey.y()):
+            raise Exception('invalid ciphertext: invalid ephemeral pubkey')
+
+        ecdh_key = (ephemeral_pubkey * self.privkey.secret_multiplier).x()
+        ecdh_key = ('%064x' % ecdh_key).decode('hex')
+        key = hashlib.sha512(ecdh_key).digest()
+        key_e, key_m = key[:32], key[32:]
+        if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest():
+            raise Exception('invalid ciphertext: invalid mac')
+
+        return aes.decryptData(key_e, iv_ciphertext)
+
+
+###################################### BIP32 ##############################
+
+random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
+BIP32_PRIME = 0x80000000
 
 
 def get_pubkeys_from_secret(secret):
     # public key
-    curve = SECP256k1
     private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 )
     public_key = private_key.get_verifying_key()
     K = public_key.to_string()
@@ -383,132 +592,177 @@ def get_pubkeys_from_secret(secret):
     return K, K_compressed
 
 
+# Child private key derivation function (from master private key)
+# k = master private key (32 bytes)
+# c = master chain code (extra entropy for key derivation) (32 bytes)
+# n = the index of the key we want to derive. (only 32 bits will be used)
+# If n is negative (i.e. the 32nd bit is set), the resulting private key's
+#  corresponding public key can NOT be determined without the master private key.
+# However, if n is positive, the resulting private key's corresponding
+#  public key can be determined without the master private key.
+def CKD_priv(k, c, n):
+    is_prime = n & BIP32_PRIME
+    return _CKD_priv(k, c, rev_hex(int_to_hex(n,4)).decode('hex'), is_prime)
 
-    
-def CKD(k, c, n):
+def _CKD_priv(k, c, s, is_prime):
     import hmac
     from ecdsa.util import string_to_number, number_to_string
     order = generator_secp256k1.order()
-    keypair = EC_KEY(string_to_number(k))
-    K = GetPubKey(keypair.pubkey,True)
-
-    if n & BIP32_PRIME:
-        data = chr(0) + k + rev_hex(int_to_hex(n,4)).decode('hex')
-        I = hmac.new(c, data, hashlib.sha512).digest()
-    else:
-        I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
-        
+    keypair = EC_KEY(k)
+    cK = GetPubKey(keypair.pubkey,True)
+    data = chr(0) + k + s if is_prime else cK + s
+    I = hmac.new(c, data, hashlib.sha512).digest()
     k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order )
     c_n = I[32:]
     return k_n, c_n
 
+# Child public key derivation function (from public key only)
+# K = master public key
+# c = master chain code
+# n = index of key we want to derive
+# This function allows us to find the nth public key, as long as n is
+#  non-negative. If n is negative, we need the master private key to find it.
+def CKD_pub(cK, c, n):
+    if n & BIP32_PRIME: raise
+    return _CKD_pub(cK, c, rev_hex(int_to_hex(n,4)).decode('hex'))
 
-def CKD_prime(K, c, n):
+# helper function, callable with arbitrary string
+def _CKD_pub(cK, c, s):
     import hmac
     from ecdsa.util import string_to_number, number_to_string
     order = generator_secp256k1.order()
-
-    if n & BIP32_PRIME: raise
-
-    K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
-    K_compressed = GetPubKey(K_public_key.pubkey,True)
-
-    I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
-
+    I = hmac.new(c, cK + s, hashlib.sha512).digest()
     curve = SECP256k1
-    pubkey_point = string_to_number(I[0:32])*curve.generator + K_public_key.pubkey.point
+    pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK)
     public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
-
-    K_n = public_key.to_string()
-    K_n_compressed = GetPubKey(public_key.pubkey,True)
     c_n = I[32:]
+    cK_n = GetPubKey(public_key.pubkey,True)
+    return cK_n, c_n
 
-    return K_n, K_n_compressed, c_n
 
+BITCOIN_HEADERS = ["0488ade4", "0488b21e"]
+TESTNET_HEADERS = ["043587cf", "04358394"]
 
+BITCOIN_HEAD = "0488ade4"
+TESTNET_HEAD = "04358394"
 
-def bip32_private_derivation(k, c, branch, sequence):
-    assert sequence.startswith(branch)
-    sequence = sequence[len(branch):]
-    for n in sequence.split('/'):
-        if n == '': continue
-        n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
-        k, c = CKD(k, c, n)
-    K, K_compressed = get_pubkeys_from_secret(k)
-    return k.encode('hex'), c.encode('hex'), K.encode('hex'), K_compressed.encode('hex')
-
-
-def bip32_public_derivation(c, K, branch, sequence):
-    assert sequence.startswith(branch)
-    sequence = sequence[len(branch):]
-    for n in sequence.split('/'):
-        n = int(n)
-        K, cK, c = CKD_prime(K, c, n)
+BITCOIN_HEADER_PRIV = "0488ADE4"
+BITCOIN_HEADER_PUB = "0488B21E"
 
-    return c.encode('hex'), K.encode('hex'), cK.encode('hex')
+TESTNET_HEADER_PRIV = "04358394"
+TESTNET_HEADER_PUB = "043587CF"
 
 
-def bip32_private_key(sequence, k, chain):
-    for i in sequence:
-        k, chain = CKD(k, chain, i)
-    return SecretToASecret(k, True)
+def _get_headers(testnet):
+    """Returns the correct headers for either testnet or bitcoin, in the form
+    of a 2-tuple, like (public, private)."""
+    if testnet:
+        return (TESTNET_HEADER_PUB, TESTNET_HEADER_PRIV)
+    else:
+        return (BITCOIN_HEADER_PUB, BITCOIN_HEADER_PRIV)
 
 
+def deserialize_xkey(xkey):
 
+    xkey = DecodeBase58Check(xkey)
+    assert len(xkey) == 78
 
-################################## transactions
+    xkey_header = xkey[0:4].encode('hex')
+    # Determine if the key is a bitcoin key or a testnet key.
+    if xkey_header in TESTNET_HEADERS:
+        head = TESTNET_HEAD
+    elif xkey_header in BITCOIN_HEADERS:
+        head = BITCOIN_HEAD
+    else:
+        raise Exception("Unknown xkey header: '%s'" % xkey_header)
+
+    depth = ord(xkey[4])
+    fingerprint = xkey[5:9]
+    child_number = xkey[9:13]
+    c = xkey[13:13+32]
+    if xkey[0:4].encode('hex') == head:
+        K_or_k = xkey[13+33:]
+    else:
+        K_or_k = xkey[13+32:]
+    return depth, fingerprint, child_number, c, K_or_k
 
-MIN_RELAY_TX_FEE = 10000
 
+def get_xkey_name(xkey, testnet=False):
+    depth, fingerprint, child_number, c, K = deserialize_xkey(xkey)
+    n = int(child_number.encode('hex'), 16)
+    if n & BIP32_PRIME:
+        child_id = "%d'"%(n - BIP32_PRIME)
+    else:
+        child_id = "%d"%n
+    if depth == 0:
+        return ''
+    elif depth == 1:
+        return child_id
+    else:
+        raise BaseException("xpub depth error")
 
 
-def test_bip32(seed, sequence):
-    """
-    run a test vector,
-    see https://en.bitcoin.it/wiki/BIP_0032_TestVectors
-    """
+def xpub_from_xprv(xprv, testnet=False):
+    depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
+    K, cK = get_pubkeys_from_secret(k)
+    header_pub, _  = _get_headers(testnet)
+    xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
+    return EncodeBase58Check(xpub)
 
-    master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
-        
-    print "secret key", master_secret.encode('hex')
-    print "chain code", master_chain.encode('hex')
 
-    key_id = hash_160(master_public_key_compressed)
-    print "keyid", key_id.encode('hex')
-    print "base58"
-    print "address", hash_160_to_bc_address(key_id)
-    print "secret key", SecretToASecret(master_secret, True)
+def bip32_root(seed, testnet=False):
+    import hmac
+    header_pub, header_priv = _get_headers(testnet)
+    seed = seed.decode('hex')
+    I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
+    master_k = I[0:32]
+    master_c = I[32:]
+    K, cK = get_pubkeys_from_secret(master_k)
+    xprv = (header_priv + "00" + "00000000" + "00000000").decode("hex") + master_c + chr(0) + master_k
+    xpub = (header_pub + "00" + "00000000" + "00000000").decode("hex") + master_c + cK
+    return EncodeBase58Check(xprv), EncodeBase58Check(xpub)
 
-    k = master_secret
-    c = master_chain
 
-    s = ['m']
+def bip32_private_derivation(xprv, branch, sequence, testnet=False):
+    header_pub, header_priv = _get_headers(testnet)
+    depth, fingerprint, child_number, c, k = deserialize_xkey(xprv)
+    assert sequence.startswith(branch)
+    sequence = sequence[len(branch):]
     for n in sequence.split('/'):
-        s.append(n)
-        print "Chain [%s]" % '/'.join(s)
-        
-        n = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
-        k0, c0 = CKD(k, c, n)
-        K0, K0_compressed = get_pubkeys_from_secret(k0)
-
-        print "* Identifier"
-        print "  * (main addr)", hash_160_to_bc_address(hash_160(K0_compressed))
-
-        print "* Secret Key"
-        print "  * (hex)", k0.encode('hex')
-        print "  * (wif)", SecretToASecret(k0, True)
-
-        print "* Chain Code"
-        print "   * (hex)", c0.encode('hex')
-
-        k = k0
-        c = c0
-    print "----"
-
-        
+        if n == '': continue
+        i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n)
+        parent_k = k
+        k, c = CKD_priv(k, c, i)
+        depth += 1
+
+    _, parent_cK = get_pubkeys_from_secret(parent_k)
+    fingerprint = hash_160(parent_cK)[0:4]
+    child_number = ("%08X"%i).decode('hex')
+    K, cK = get_pubkeys_from_secret(k)
+    xprv = header_priv.decode('hex') + chr(depth) + fingerprint + child_number + c + chr(0) + k
+    xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
+    return EncodeBase58Check(xprv), EncodeBase58Check(xpub)
+
+
+def bip32_public_derivation(xpub, branch, sequence, testnet=False):
+    header_pub, _ = _get_headers(testnet)
+    depth, fingerprint, child_number, c, cK = deserialize_xkey(xpub)
+    assert sequence.startswith(branch)
+    sequence = sequence[len(branch):]
+    for n in sequence.split('/'):
+        if n == '': continue
+        i = int(n)
+        parent_cK = cK
+        cK, c = CKD_pub(cK, c, i)
+        depth += 1
 
+    fingerprint = hash_160(parent_cK)[0:4]
+    child_number = ("%08X"%i).decode('hex')
+    xpub = header_pub.decode('hex') + chr(depth) + fingerprint + child_number + c + cK
+    return EncodeBase58Check(xpub)
 
-if __name__ == '__main__':
-    test_bip32("000102030405060708090a0b0c0d0e0f", "0'/1/2'/2/1000000000")
-    test_bip32("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542","0/2147483647'/1/2147483646'/2")
 
+def bip32_private_key(sequence, k, chain):
+    for i in sequence:
+        k, chain = CKD_priv(k, chain, i)
+    return SecretToASecret(k, True)