move seed generation function to bitcoin.py
[electrum-nvc.git] / lib / bitcoin.py
1 #!/usr/bin/env python
2 #
3 # Electrum - lightweight Bitcoin client
4 # Copyright (C) 2011 thomasv@gitorious
5 #
6 # This program is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.
10 #
11 # This program is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see <http://www.gnu.org/licenses/>.
18
19
20 import hashlib, base64, ecdsa, re
21 from util import print_error
22
23 def rev_hex(s):
24     return s.decode('hex')[::-1].encode('hex')
25
26 def int_to_hex(i, length=1):
27     s = hex(i)[2:].rstrip('L')
28     s = "0"*(2*length - len(s)) + s
29     return rev_hex(s)
30
31 def var_int(i):
32     # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
33     if i<0xfd:
34         return int_to_hex(i)
35     elif i<=0xffff:
36         return "fd"+int_to_hex(i,2)
37     elif i<=0xffffffff:
38         return "fe"+int_to_hex(i,4)
39     else:
40         return "ff"+int_to_hex(i,8)
41
42 def op_push(i):
43     if i<0x4c:
44         return int_to_hex(i)
45     elif i<0xff:
46         return '4c' + int_to_hex(i)
47     elif i<0xffff:
48         return '4d' + int_to_hex(i,2)
49     else:
50         return '4e' + int_to_hex(i,4)
51     
52
53
54 Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
55 hash_encode = lambda x: x[::-1].encode('hex')
56 hash_decode = lambda x: x.decode('hex')[::-1]
57
58
59 # pywallet openssl private key implementation
60
61 def i2d_ECPrivateKey(pkey, compressed=False):
62     if compressed:
63         key = '3081d30201010420' + \
64               '%064x' % pkey.secret + \
65               'a081a53081a2020101302c06072a8648ce3d0101022100' + \
66               '%064x' % _p + \
67               '3006040100040107042102' + \
68               '%064x' % _Gx + \
69               '022100' + \
70               '%064x' % _r + \
71               '020101a124032200'
72     else:
73         key = '308201130201010420' + \
74               '%064x' % pkey.secret + \
75               'a081a53081a2020101302c06072a8648ce3d0101022100' + \
76               '%064x' % _p + \
77               '3006040100040107044104' + \
78               '%064x' % _Gx + \
79               '%064x' % _Gy + \
80               '022100' + \
81               '%064x' % _r + \
82               '020101a144034200'
83         
84     return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
85     
86 def i2o_ECPublicKey(pubkey, compressed=False):
87     # public keys are 65 bytes long (520 bits)
88     # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
89     # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
90     # compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
91     if compressed:
92         if pubkey.point.y() & 1:
93             key = '03' + '%064x' % pubkey.point.x()
94         else:
95             key = '02' + '%064x' % pubkey.point.x()
96     else:
97         key = '04' + \
98               '%064x' % pubkey.point.x() + \
99               '%064x' % pubkey.point.y()
100             
101     return key.decode('hex')
102             
103 # end pywallet openssl private key implementation
104
105                                                 
106             
107 ############ functions from pywallet ##################### 
108
109 def hash_160(public_key):
110     try:
111         md = hashlib.new('ripemd160')
112         md.update(hashlib.sha256(public_key).digest())
113         return md.digest()
114     except:
115         import ripemd
116         md = ripemd.new(hashlib.sha256(public_key).digest())
117         return md.digest()
118
119
120 def public_key_to_bc_address(public_key):
121     h160 = hash_160(public_key)
122     return hash_160_to_bc_address(h160)
123
124 def hash_160_to_bc_address(h160, addrtype = 0):
125     vh160 = chr(addrtype) + h160
126     h = Hash(vh160)
127     addr = vh160 + h[0:4]
128     return b58encode(addr)
129
130 def bc_address_to_hash_160(addr):
131     bytes = b58decode(addr, 25)
132     return ord(bytes[0]), bytes[1:21]
133
134 def encode_point(pubkey, compressed=False):
135     order = generator_secp256k1.order()
136     p = pubkey.pubkey.point
137     x_str = ecdsa.util.number_to_string(p.x(), order)
138     y_str = ecdsa.util.number_to_string(p.y(), order)
139     if compressed:
140         return chr(2 + (p.y() & 1)) + x_str
141     else:
142         return chr(4) + pubkey.to_string() #x_str + y_str
143
144 __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
145 __b58base = len(__b58chars)
146
147 def b58encode(v):
148     """ encode v, which is a string of bytes, to base58."""
149
150     long_value = 0L
151     for (i, c) in enumerate(v[::-1]):
152         long_value += (256**i) * ord(c)
153
154     result = ''
155     while long_value >= __b58base:
156         div, mod = divmod(long_value, __b58base)
157         result = __b58chars[mod] + result
158         long_value = div
159     result = __b58chars[long_value] + result
160
161     # Bitcoin does a little leading-zero-compression:
162     # leading 0-bytes in the input become leading-1s
163     nPad = 0
164     for c in v:
165         if c == '\0': nPad += 1
166         else: break
167
168     return (__b58chars[0]*nPad) + result
169
170 def b58decode(v, length):
171     """ decode v into a string of len bytes."""
172     long_value = 0L
173     for (i, c) in enumerate(v[::-1]):
174         long_value += __b58chars.find(c) * (__b58base**i)
175
176     result = ''
177     while long_value >= 256:
178         div, mod = divmod(long_value, 256)
179         result = chr(mod) + result
180         long_value = div
181     result = chr(long_value) + result
182
183     nPad = 0
184     for c in v:
185         if c == __b58chars[0]: nPad += 1
186         else: break
187
188     result = chr(0)*nPad + result
189     if length is not None and len(result) != length:
190         return None
191
192     return result
193
194
195 def EncodeBase58Check(vchIn):
196     hash = Hash(vchIn)
197     return b58encode(vchIn + hash[0:4])
198
199 def DecodeBase58Check(psz):
200     vchRet = b58decode(psz, None)
201     key = vchRet[0:-4]
202     csum = vchRet[-4:]
203     hash = Hash(key)
204     cs32 = hash[0:4]
205     if cs32 != csum:
206         return None
207     else:
208         return key
209
210 def PrivKeyToSecret(privkey):
211     return privkey[9:9+32]
212
213 def SecretToASecret(secret, compressed=False, addrtype=0):
214     vchIn = chr((addrtype+128)&255) + secret
215     if compressed: vchIn += '\01'
216     return EncodeBase58Check(vchIn)
217
218 def ASecretToSecret(key, addrtype=0):
219     vch = DecodeBase58Check(key)
220     if vch and vch[0] == chr((addrtype+128)&255):
221         return vch[1:]
222     else:
223         return False
224
225 def regenerate_key(sec):
226     b = ASecretToSecret(sec)
227     if not b:
228         return False
229     b = b[0:32]
230     secret = int('0x' + b.encode('hex'), 16)
231     return EC_KEY(secret)
232
233 def GetPubKey(pubkey, compressed=False):
234     return i2o_ECPublicKey(pubkey, compressed)
235
236 def GetPrivKey(pkey, compressed=False):
237     return i2d_ECPrivateKey(pkey, compressed)
238
239 def GetSecret(pkey):
240     return ('%064x' % pkey.secret).decode('hex')
241
242 def is_compressed(sec):
243     b = ASecretToSecret(sec)
244     return len(b) == 33
245
246
247 def address_from_private_key(sec):
248     # rebuild public key from private key, compressed or uncompressed
249     pkey = regenerate_key(sec)
250     assert pkey
251
252     # figure out if private key is compressed
253     compressed = is_compressed(sec)
254         
255     # rebuild private and public key from regenerated secret
256     private_key = GetPrivKey(pkey, compressed)
257     public_key = GetPubKey(pkey.pubkey, compressed)
258     address = public_key_to_bc_address(public_key)
259     return address
260
261
262 ########### end pywallet functions #######################
263
264 # secp256k1, http://www.oid-info.com/get/1.3.132.0.10
265 _p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
266 _r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
267 _b = 0x0000000000000000000000000000000000000000000000000000000000000007L
268 _a = 0x0000000000000000000000000000000000000000000000000000000000000000L
269 _Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
270 _Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
271 curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
272 generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
273 oid_secp256k1 = (1,3,132,0,10)
274 SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 ) 
275
276 from ecdsa.util import string_to_number, number_to_string
277
278 def msg_magic(message):
279     return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
280
281
282 class EC_KEY(object):
283     def __init__( self, secret ):
284         self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
285         self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
286         self.secret = secret
287
288     def sign_message(self, message, compressed, address):
289         private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
290         public_key = private_key.get_verifying_key()
291         signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
292         assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
293         for i in range(4):
294             sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
295             try:
296                 self.verify_message( address, sig, message)
297                 return sig
298             except:
299                 continue
300         else:
301             raise BaseException("error: cannot sign message")
302
303     @classmethod
304     def verify_message(self, address, signature, message):
305         """ See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
306         from ecdsa import numbertheory, ellipticcurve, util
307         import msqr
308         curve = curve_secp256k1
309         G = generator_secp256k1
310         order = G.order()
311         # extract r,s from signature
312         sig = base64.b64decode(signature)
313         if len(sig) != 65: raise BaseException("Wrong encoding")
314         r,s = util.sigdecode_string(sig[1:], order)
315         nV = ord(sig[0])
316         if nV < 27 or nV >= 35:
317             raise BaseException("Bad encoding")
318         if nV >= 31:
319             compressed = True
320             nV -= 4
321         else:
322             compressed = False
323
324         recid = nV - 27
325         # 1.1
326         x = r + (recid/2) * order
327         # 1.3
328         alpha = ( x * x * x  + curve.a() * x + curve.b() ) % curve.p()
329         beta = msqr.modular_sqrt(alpha, curve.p())
330         y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
331         # 1.4 the constructor checks that nR is at infinity
332         R = ellipticcurve.Point(curve, x, y, order)
333         # 1.5 compute e from message:
334         h = Hash( msg_magic(message) )
335         e = string_to_number(h)
336         minus_e = -e % order
337         # 1.6 compute Q = r^-1 (sR - eG)
338         inv_r = numbertheory.inverse_mod(r,order)
339         Q = inv_r * ( s * R + minus_e * G )
340         public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
341         # check that Q is the public key
342         public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
343         # check that we get the original signing address
344         addr = public_key_to_bc_address( encode_point(public_key, compressed) )
345         if address != addr:
346             raise BaseException("Bad signature")
347
348
349 ###################################### BIP32 ##############################
350
351 random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) )
352
353
354
355 def bip32_init(seed):
356     import hmac
357         
358     I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
359
360     print "seed", seed.encode('hex')
361     master_secret = I[0:32]
362     master_chain = I[32:]
363
364     # public key
365     curve = SECP256k1
366     master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 )
367     master_public_key = master_private_key.get_verifying_key()
368     K = master_public_key.to_string()
369     K_compressed = GetPubKey(master_public_key.pubkey,True)
370     return master_secret, master_chain, K, K_compressed
371
372     
373 def CKD(k, c, n):
374     import hmac
375     from ecdsa.util import string_to_number, number_to_string
376     order = generator_secp256k1.order()
377     keypair = EC_KEY(string_to_number(k))
378     K = GetPubKey(keypair.pubkey,True)
379     I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
380     k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order )
381     c_n = I[32:]
382     return k_n, c_n
383
384
385 def CKD_prime(K, c, n):
386     import hmac
387     from ecdsa.util import string_to_number, number_to_string
388     order = generator_secp256k1.order()
389
390     K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
391     K_compressed = GetPubKey(K_public_key.pubkey,True)
392
393     I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
394
395     #pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point )
396     public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 )
397     K_n = public_key.to_string()
398     K_n_compressed = GetPubKey(public_key.pubkey,True)
399     c_n = I[32:]
400
401     return K_n, K_n_compressed, c_n
402
403
404
405 class DeterministicSequence:
406     """  Privatekey(type,n) = Master_private_key + H(n|S|type)  """
407
408     def __init__(self, master_public_key):
409         self.master_public_key = master_public_key
410
411     @classmethod
412     def from_seed(klass, seed):
413         curve = SECP256k1
414         secexp = klass.stretch_key(seed)
415         master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
416         master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
417         self = klass(master_public_key)
418         return self
419
420     @classmethod
421     def stretch_key(self,seed):
422         oldseed = seed
423         for i in range(100000):
424             seed = hashlib.sha256(seed + oldseed).digest()
425         return string_to_number( seed )
426
427     def get_sequence(self,n,for_change):
428         return string_to_number( Hash( "%d:%d:"%(n,for_change) + self.master_public_key.decode('hex') ) )
429
430     def get_pubkey(self, n, for_change):
431         curve = SECP256k1
432         z = self.get_sequence(n, for_change)
433         master_public_key = ecdsa.VerifyingKey.from_string( self.master_public_key.decode('hex'), curve = SECP256k1 )
434         pubkey_point = master_public_key.pubkey.point + z*curve.generator
435         public_key2 = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 )
436         return '04' + public_key2.to_string().encode('hex')
437
438     def get_private_key(self, n, for_change, seed):
439         order = generator_secp256k1.order()
440         secexp = self.stretch_key(seed)
441         secexp = ( secexp + self.get_sequence(n,for_change) ) % order
442         pk = number_to_string( secexp, generator_secp256k1.order() )
443         compressed = False
444         return SecretToASecret( pk, compressed )
445
446     def check_seed(self, seed):
447         curve = SECP256k1
448         secexp = self.stretch_key(seed)
449         master_private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
450         master_public_key = master_private_key.get_verifying_key().to_string().encode('hex')
451         if master_public_key != self.master_public_key:
452             print_error('invalid password (mpk)')
453             raise BaseException('Invalid password')
454
455         return True
456
457 ################################## transactions
458
459
460
461
462
463
464
465
466 class Transaction:
467     
468     def __init__(self, raw):
469         self.raw = raw
470         self.deserialize()
471         self.inputs = self.d['inputs']
472         self.outputs = self.d['outputs']
473         self.outputs = map(lambda x: (x['address'],x['value']), self.outputs)
474         
475     @classmethod
476     def from_io(klass, inputs, outputs):
477         raw = klass.serialize(inputs, outputs, for_sig = -1) # for_sig=-1 means do not sign
478         self = klass(raw)
479         self.inputs = inputs
480         self.outputs = outputs
481         return self
482
483     def __str__(self):
484         return self.raw
485
486     @classmethod
487     def multisig_script(klass, public_keys, num=None):
488         n = len(public_keys)
489         if num is None: num = n
490         # supports only "2 of 2", and "2 of 3" transactions
491         assert num <= n and n in [2,3]
492     
493         if num==2:
494             s = '52'
495         elif num == 3:
496             s = '53'
497         else:
498             raise
499     
500         for k in public_keys:
501             s += var_int(len(k)/2)
502             s += k
503         if n==2:
504             s += '52'
505         elif n==3:
506             s += '53'
507         else:
508             raise
509         s += 'ae'
510
511         out = { "address": hash_160_to_bc_address(hash_160(s.decode('hex')), 5), "redeemScript":s }
512         return out
513
514     @classmethod
515     def serialize( klass, inputs, outputs, for_sig = None ):
516
517         s  = int_to_hex(1,4)                                         # version
518         s += var_int( len(inputs) )                                  # number of inputs
519         for i in range(len(inputs)):
520             txin = inputs[i]
521             s += txin['tx_hash'].decode('hex')[::-1].encode('hex')   # prev hash
522             s += int_to_hex(txin['index'],4)                         # prev index
523
524             if for_sig is None:
525                 pubkeysig = txin.get('pubkeysig')
526                 if pubkeysig:
527                     pubkey, sig = pubkeysig[0]
528                     sig = sig + chr(1)                               # hashtype
529                     script  = op_push( len(sig))
530                     script += sig.encode('hex')
531                     script += op_push( len(pubkey))
532                     script += pubkey.encode('hex')
533                 else:
534                     signatures = txin['signatures']
535                     pubkeys = txin['pubkeys']
536                     script = '00'                                    # op_0
537                     for sig in signatures:
538                         sig = sig + '01'
539                         script += op_push(len(sig)/2)
540                         script += sig
541
542                     redeem_script = klass.multisig_script(pubkeys,2).get('redeemScript')
543                     script += op_push(len(redeem_script)/2)
544                     script += redeem_script
545
546             elif for_sig==i:
547                 if txin.get('redeemScript'):
548                     script = txin['redeemScript']                    # p2sh uses the inner script
549                 else:
550                     script = txin['raw_output_script']               # scriptsig
551             else:
552                 script=''
553             s += var_int( len(script)/2 )                            # script length
554             s += script
555             s += "ffffffff"                                          # sequence
556
557         s += var_int( len(outputs) )                                 # number of outputs
558         for output in outputs:
559             addr, amount = output
560             s += int_to_hex( amount, 8)                              # amount
561             addrtype, hash_160 = bc_address_to_hash_160(addr)
562             if addrtype == 0:
563                 script = '76a9'                                      # op_dup, op_hash_160
564                 script += '14'                                       # push 0x14 bytes
565                 script += hash_160.encode('hex')
566                 script += '88ac'                                     # op_equalverify, op_checksig
567             elif addrtype == 5:
568                 script = 'a9'                                        # op_hash_160
569                 script += '14'                                       # push 0x14 bytes
570                 script += hash_160.encode('hex')
571                 script += '87'                                       # op_equal
572             else:
573                 raise
574             
575             s += var_int( len(script)/2 )                           #  script length
576             s += script                                             #  script
577         s += int_to_hex(0,4)                                        #  lock time
578         if for_sig is not None and for_sig != -1:
579             s += int_to_hex(1, 4)                                   #  hash type
580         return s
581
582
583     def for_sig(self,i):
584         return self.serialize(self.inputs, self.outputs, for_sig = i)
585
586
587     def hash(self):
588         return Hash(self.raw.decode('hex') )[::-1].encode('hex')
589
590     def sign(self, private_keys):
591         import deserialize
592
593         for i in range(len(self.inputs)):
594             txin = self.inputs[i]
595             tx_for_sig = self.serialize( self.inputs, self.outputs, for_sig = i )
596
597             if txin.get('redeemScript'):
598                 # 1 parse the redeem script
599                 num, redeem_pubkeys = deserialize.parse_redeemScript(txin.get('redeemScript'))
600                 self.inputs[i]["pubkeys"] = redeem_pubkeys
601
602                 # build list of public/private keys
603                 keypairs = {}
604                 for sec in private_keys.values():
605                     compressed = is_compressed(sec)
606                     pkey = regenerate_key(sec)
607                     pubkey = GetPubKey(pkey.pubkey, compressed)
608                     keypairs[ pubkey.encode('hex') ] = sec
609
610                 # list of already existing signatures
611                 signatures = txin.get("signatures",[])
612                 print_error("signatures",signatures)
613
614                 for pubkey in redeem_pubkeys:
615                     public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1)
616                     for s in signatures:
617                         try:
618                             public_key.verify_digest( s.decode('hex')[:-1], Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
619                             break
620                         except ecdsa.keys.BadSignatureError:
621                             continue
622                     else:
623                         # check if we have a key corresponding to the redeem script
624                         if pubkey in keypairs.keys():
625                             # add signature
626                             sec = keypairs[pubkey]
627                             compressed = is_compressed(sec)
628                             pkey = regenerate_key(sec)
629                             secexp = pkey.secret
630                             private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
631                             public_key = private_key.get_verifying_key()
632                             sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
633                             assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
634                             signatures.append( sig.encode('hex') )
635                         
636                 # for p2sh, pubkeysig is a tuple (may be incomplete)
637                 self.inputs[i]["signatures"] = signatures
638                 print_error("signatures",signatures)
639                 self.is_complete = len(signatures) == num
640
641             else:
642                 sec = private_keys[txin['address']]
643                 compressed = is_compressed(sec)
644                 pkey = regenerate_key(sec)
645                 secexp = pkey.secret
646
647                 private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
648                 public_key = private_key.get_verifying_key()
649                 pkey = EC_KEY(secexp)
650                 pubkey = GetPubKey(pkey.pubkey, compressed)
651                 sig = private_key.sign_digest( Hash( tx_for_sig.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
652                 assert public_key.verify_digest( sig, Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
653
654                 self.inputs[i]["pubkeysig"] = [(pubkey, sig)]
655                 self.is_complete = True
656
657         self.raw = self.serialize( self.inputs, self.outputs )
658
659
660     def deserialize(self):
661         import deserialize
662         vds = deserialize.BCDataStream()
663         vds.write(self.raw.decode('hex'))
664         self.d = deserialize.parse_Transaction(vds)
665         return self.d
666     
667
668     def has_address(self, addr):
669         found = False
670         for txin in self.inputs:
671             if addr == txin.get('address'): 
672                 found = True
673                 break
674         for txout in self.outputs:
675             if addr == txout[0]:
676                 found = True
677                 break
678         return found
679
680
681     def get_value(self, addresses, prevout_values):
682         # return the balance for that tx
683         is_send = False
684         is_pruned = False
685         v_in = v_out = v_out_mine = 0
686
687         for item in self.inputs:
688             addr = item.get('address')
689             if addr in addresses:
690                 is_send = True
691                 key = item['prevout_hash']  + ':%d'%item['prevout_n']
692                 value = prevout_values.get( key )
693                 if value is None:
694                     is_pruned = True
695                 else:
696                     v_in += value
697             else:
698                 is_pruned = True
699                     
700         for item in self.outputs:
701             addr, value = item
702             v_out += value
703             if addr in addresses:
704                 v_out_mine += value
705
706         if not is_pruned:
707             # all inputs are mine:
708             fee = v_out - v_in
709             v = v_out_mine - v_in
710         else:
711             # some inputs are mine:
712             fee = None
713             if is_send:
714                 v = v_out_mine - v_out
715             else:
716                 # no input is mine
717                 v = v_out_mine
718             
719         return is_send, v, fee
720
721
722
723 def test_bip32():
724     seed = "ff000000000000000000000000000000".decode('hex')
725     master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
726         
727     print "secret key", master_secret.encode('hex')
728     print "chain code", master_chain.encode('hex')
729
730     key_id = hash_160(master_public_key_compressed)
731     print "keyid", key_id.encode('hex')
732     print "base58"
733     print "address", hash_160_to_bc_address(key_id)
734     print "secret key", SecretToASecret(master_secret, True)
735
736     print "-- m/0 --"
737     k0, c0 = CKD(master_secret, master_chain, 0)
738     print "secret", k0.encode('hex')
739     print "chain", c0.encode('hex')
740     print "secret key", SecretToASecret(k0, True)
741     
742     K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0)
743     print "address", hash_160_to_bc_address(hash_160(K0_compressed))
744     
745     print "-- m/0/1 --"
746     K01, K01_compressed, c01 = CKD_prime(K0, c0, 1)
747     print "address", hash_160_to_bc_address(hash_160(K01_compressed))
748     
749     print "-- m/0/1/3 --"
750     K013, K013_compressed, c013 = CKD_prime(K01, c01, 3)
751     print "address", hash_160_to_bc_address(hash_160(K013_compressed))
752     
753     print "-- m/0/1/3/7 --"
754     K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7)
755     print "address", hash_160_to_bc_address(hash_160(K0137_compressed))
756         
757
758
759 if __name__ == '__main__':
760     test_bip32()
761
762