store transactions in serialized form
[electrum-nvc.git] / lib / bitcoin.py
1 #!/usr/bin/env python
2 #
3 # Electrum - lightweight Bitcoin client
4 # Copyright (C) 2011 thomasv@gitorious
5 #
6 # This program is free software: you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation, either version 3 of the License, or
9 # (at your option) any later version.
10 #
11 # This program is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 # GNU General Public License for more details.
15 #
16 # You should have received a copy of the GNU General Public License
17 # along with this program. If not, see <http://www.gnu.org/licenses/>.
18
19
20 import hashlib, base64, ecdsa, re
21
22
23 def rev_hex(s):
24     return s.decode('hex')[::-1].encode('hex')
25
26 def int_to_hex(i, length=1):
27     s = hex(i)[2:].rstrip('L')
28     s = "0"*(2*length - len(s)) + s
29     return rev_hex(s)
30
31 def var_int(i):
32     # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer
33     if i<0xfd:
34         return int_to_hex(i)
35     elif i<=0xffff:
36         return "fd"+int_to_hex(i,2)
37     elif i<=0xffffffff:
38         return "fe"+int_to_hex(i,4)
39     else:
40         return "ff"+int_to_hex(i,8)
41
42 def op_push(i):
43     if i<0x4c:
44         return int_to_hex(i)
45     elif i<0xff:
46         return '4c' + int_to_hex(i)
47     elif i<0xffff:
48         return '4d' + int_to_hex(i,2)
49     else:
50         return '4e' + int_to_hex(i,4)
51     
52
53
54 Hash = lambda x: hashlib.sha256(hashlib.sha256(x).digest()).digest()
55 hash_encode = lambda x: x[::-1].encode('hex')
56 hash_decode = lambda x: x.decode('hex')[::-1]
57
58
59 # pywallet openssl private key implementation
60
61 def i2d_ECPrivateKey(pkey, compressed=False):
62     if compressed:
63         key = '3081d30201010420' + \
64               '%064x' % pkey.secret + \
65               'a081a53081a2020101302c06072a8648ce3d0101022100' + \
66               '%064x' % _p + \
67               '3006040100040107042102' + \
68               '%064x' % _Gx + \
69               '022100' + \
70               '%064x' % _r + \
71               '020101a124032200'
72     else:
73         key = '308201130201010420' + \
74               '%064x' % pkey.secret + \
75               'a081a53081a2020101302c06072a8648ce3d0101022100' + \
76               '%064x' % _p + \
77               '3006040100040107044104' + \
78               '%064x' % _Gx + \
79               '%064x' % _Gy + \
80               '022100' + \
81               '%064x' % _r + \
82               '020101a144034200'
83         
84     return key.decode('hex') + i2o_ECPublicKey(pkey.pubkey, compressed)
85     
86 def i2o_ECPublicKey(pubkey, compressed=False):
87     # public keys are 65 bytes long (520 bits)
88     # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate
89     # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed
90     # compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd
91     if compressed:
92         if pubkey.point.y() & 1:
93             key = '03' + '%064x' % pubkey.point.x()
94         else:
95             key = '02' + '%064x' % pubkey.point.x()
96     else:
97         key = '04' + \
98               '%064x' % pubkey.point.x() + \
99               '%064x' % pubkey.point.y()
100             
101     return key.decode('hex')
102             
103 # end pywallet openssl private key implementation
104
105                                                 
106             
107 ############ functions from pywallet ##################### 
108
109 def hash_160(public_key):
110     try:
111         md = hashlib.new('ripemd160')
112         md.update(hashlib.sha256(public_key).digest())
113         return md.digest()
114     except:
115         import ripemd
116         md = ripemd.new(hashlib.sha256(public_key).digest())
117         return md.digest()
118
119
120 def public_key_to_bc_address(public_key):
121     h160 = hash_160(public_key)
122     return hash_160_to_bc_address(h160)
123
124 def hash_160_to_bc_address(h160, addrtype = 0):
125     vh160 = chr(addrtype) + h160
126     h = Hash(vh160)
127     addr = vh160 + h[0:4]
128     return b58encode(addr)
129
130 def bc_address_to_hash_160(addr):
131     bytes = b58decode(addr, 25)
132     return ord(bytes[0]), bytes[1:21]
133
134 def encode_point(pubkey, compressed=False):
135     order = generator_secp256k1.order()
136     p = pubkey.pubkey.point
137     x_str = ecdsa.util.number_to_string(p.x(), order)
138     y_str = ecdsa.util.number_to_string(p.y(), order)
139     if compressed:
140         return chr(2 + (p.y() & 1)) + x_str
141     else:
142         return chr(4) + pubkey.to_string() #x_str + y_str
143
144 __b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
145 __b58base = len(__b58chars)
146
147 def b58encode(v):
148     """ encode v, which is a string of bytes, to base58."""
149
150     long_value = 0L
151     for (i, c) in enumerate(v[::-1]):
152         long_value += (256**i) * ord(c)
153
154     result = ''
155     while long_value >= __b58base:
156         div, mod = divmod(long_value, __b58base)
157         result = __b58chars[mod] + result
158         long_value = div
159     result = __b58chars[long_value] + result
160
161     # Bitcoin does a little leading-zero-compression:
162     # leading 0-bytes in the input become leading-1s
163     nPad = 0
164     for c in v:
165         if c == '\0': nPad += 1
166         else: break
167
168     return (__b58chars[0]*nPad) + result
169
170 def b58decode(v, length):
171     """ decode v into a string of len bytes."""
172     long_value = 0L
173     for (i, c) in enumerate(v[::-1]):
174         long_value += __b58chars.find(c) * (__b58base**i)
175
176     result = ''
177     while long_value >= 256:
178         div, mod = divmod(long_value, 256)
179         result = chr(mod) + result
180         long_value = div
181     result = chr(long_value) + result
182
183     nPad = 0
184     for c in v:
185         if c == __b58chars[0]: nPad += 1
186         else: break
187
188     result = chr(0)*nPad + result
189     if length is not None and len(result) != length:
190         return None
191
192     return result
193
194
195 def EncodeBase58Check(vchIn):
196     hash = Hash(vchIn)
197     return b58encode(vchIn + hash[0:4])
198
199 def DecodeBase58Check(psz):
200     vchRet = b58decode(psz, None)
201     key = vchRet[0:-4]
202     csum = vchRet[-4:]
203     hash = Hash(key)
204     cs32 = hash[0:4]
205     if cs32 != csum:
206         return None
207     else:
208         return key
209
210 def PrivKeyToSecret(privkey):
211     return privkey[9:9+32]
212
213 def SecretToASecret(secret, compressed=False, addrtype=0):
214     vchIn = chr((addrtype+128)&255) + secret
215     if compressed: vchIn += '\01'
216     return EncodeBase58Check(vchIn)
217
218 def ASecretToSecret(key, addrtype=0):
219     vch = DecodeBase58Check(key)
220     if vch and vch[0] == chr((addrtype+128)&255):
221         return vch[1:]
222     else:
223         return False
224
225 def regenerate_key(sec):
226     b = ASecretToSecret(sec)
227     if not b:
228         return False
229     b = b[0:32]
230     secret = int('0x' + b.encode('hex'), 16)
231     return EC_KEY(secret)
232
233 def GetPubKey(pubkey, compressed=False):
234     return i2o_ECPublicKey(pubkey, compressed)
235
236 def GetPrivKey(pkey, compressed=False):
237     return i2d_ECPrivateKey(pkey, compressed)
238
239 def GetSecret(pkey):
240     return ('%064x' % pkey.secret).decode('hex')
241
242 def is_compressed(sec):
243     b = ASecretToSecret(sec)
244     return len(b) == 33
245
246
247 def address_from_private_key(sec):
248     # rebuild public key from private key, compressed or uncompressed
249     pkey = regenerate_key(sec)
250     assert pkey
251
252     # figure out if private key is compressed
253     compressed = is_compressed(sec)
254         
255     # rebuild private and public key from regenerated secret
256     private_key = GetPrivKey(pkey, compressed)
257     public_key = GetPubKey(pkey.pubkey, compressed)
258     address = public_key_to_bc_address(public_key)
259     return address
260
261
262 ########### end pywallet functions #######################
263
264 # secp256k1, http://www.oid-info.com/get/1.3.132.0.10
265 _p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2FL
266 _r = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141L
267 _b = 0x0000000000000000000000000000000000000000000000000000000000000007L
268 _a = 0x0000000000000000000000000000000000000000000000000000000000000000L
269 _Gx = 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798L
270 _Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8L
271 curve_secp256k1 = ecdsa.ellipticcurve.CurveFp( _p, _a, _b )
272 generator_secp256k1 = ecdsa.ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r )
273 oid_secp256k1 = (1,3,132,0,10)
274 SECP256k1 = ecdsa.curves.Curve("SECP256k1", curve_secp256k1, generator_secp256k1, oid_secp256k1 ) 
275
276 from ecdsa.util import string_to_number, number_to_string
277
278 def msg_magic(message):
279     return "\x18Bitcoin Signed Message:\n" + chr( len(message) ) + message
280
281
282 class EC_KEY(object):
283     def __init__( self, secret ):
284         self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret )
285         self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret )
286         self.secret = secret
287
288     def sign_message(self, message, compressed, address):
289         private_key = ecdsa.SigningKey.from_secret_exponent( self.secret, curve = SECP256k1 )
290         public_key = private_key.get_verifying_key()
291         signature = private_key.sign_digest( Hash( msg_magic(message) ), sigencode = ecdsa.util.sigencode_string )
292         assert public_key.verify_digest( signature, Hash( msg_magic(message) ), sigdecode = ecdsa.util.sigdecode_string)
293         for i in range(4):
294             sig = base64.b64encode( chr(27 + i + (4 if compressed else 0)) + signature )
295             try:
296                 self.verify_message( address, sig, message)
297                 return sig
298             except:
299                 continue
300         else:
301             raise BaseException("error: cannot sign message")
302
303     @classmethod
304     def verify_message(self, address, signature, message):
305         """ See http://www.secg.org/download/aid-780/sec1-v2.pdf for the math """
306         from ecdsa import numbertheory, ellipticcurve, util
307         import msqr
308         curve = curve_secp256k1
309         G = generator_secp256k1
310         order = G.order()
311         # extract r,s from signature
312         sig = base64.b64decode(signature)
313         if len(sig) != 65: raise BaseException("Wrong encoding")
314         r,s = util.sigdecode_string(sig[1:], order)
315         nV = ord(sig[0])
316         if nV < 27 or nV >= 35:
317             raise BaseException("Bad encoding")
318         if nV >= 31:
319             compressed = True
320             nV -= 4
321         else:
322             compressed = False
323
324         recid = nV - 27
325         # 1.1
326         x = r + (recid/2) * order
327         # 1.3
328         alpha = ( x * x * x  + curve.a() * x + curve.b() ) % curve.p()
329         beta = msqr.modular_sqrt(alpha, curve.p())
330         y = beta if (beta - recid) % 2 == 0 else curve.p() - beta
331         # 1.4 the constructor checks that nR is at infinity
332         R = ellipticcurve.Point(curve, x, y, order)
333         # 1.5 compute e from message:
334         h = Hash( msg_magic(message) )
335         e = string_to_number(h)
336         minus_e = -e % order
337         # 1.6 compute Q = r^-1 (sR - eG)
338         inv_r = numbertheory.inverse_mod(r,order)
339         Q = inv_r * ( s * R + minus_e * G )
340         public_key = ecdsa.VerifyingKey.from_public_point( Q, curve = SECP256k1 )
341         # check that Q is the public key
342         public_key.verify_digest( sig[1:], h, sigdecode = ecdsa.util.sigdecode_string)
343         # check that we get the original signing address
344         addr = public_key_to_bc_address( encode_point(public_key, compressed) )
345         if address != addr:
346             raise BaseException("Bad signature")
347
348
349 ###################################### BIP32 ##############################
350
351 def bip32_init(seed):
352     import hmac
353         
354     I = hmac.new("Bitcoin seed", seed, hashlib.sha512).digest()
355
356     print "seed", seed.encode('hex')
357     master_secret = I[0:32]
358     master_chain = I[32:]
359
360     # public key
361     curve = SECP256k1
362     master_private_key = ecdsa.SigningKey.from_string( master_secret, curve = SECP256k1 )
363     master_public_key = master_private_key.get_verifying_key()
364     K = master_public_key.to_string()
365     K_compressed = GetPubKey(master_public_key.pubkey,True)
366     return master_secret, master_chain, K, K_compressed
367
368     
369 def CKD(k, c, n):
370     import hmac
371     from ecdsa.util import string_to_number, number_to_string
372     order = generator_secp256k1.order()
373     keypair = EC_KEY(string_to_number(k))
374     K = GetPubKey(keypair.pubkey,True)
375     I = hmac.new(c, K + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
376     k_n = number_to_string( (string_to_number(I[0:32]) * string_to_number(k)) % order , order )
377     c_n = I[32:]
378     return k_n, c_n
379
380
381 def CKD_prime(K, c, n):
382     import hmac
383     from ecdsa.util import string_to_number, number_to_string
384     order = generator_secp256k1.order()
385
386     K_public_key = ecdsa.VerifyingKey.from_string( K, curve = SECP256k1 )
387     K_compressed = GetPubKey(K_public_key.pubkey,True)
388
389     I = hmac.new(c, K_compressed + rev_hex(int_to_hex(n,4)).decode('hex'), hashlib.sha512).digest()
390
391     #pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, string_to_number(I[0:32]) * K_public_key.pubkey.point )
392     public_key = ecdsa.VerifyingKey.from_public_point( string_to_number(I[0:32]) * K_public_key.pubkey.point, curve = SECP256k1 )
393     K_n = public_key.to_string()
394     K_n_compressed = GetPubKey(public_key.pubkey,True)
395     c_n = I[32:]
396
397     return K_n, K_n_compressed, c_n
398
399
400
401
402
403 ################################## transactions
404
405
406
407 def raw_tx( inputs, outputs, for_sig = None ):
408
409     s  = int_to_hex(1,4)                                         # version
410     s += var_int( len(inputs) )                                  # number of inputs
411     for i in range(len(inputs)):
412         txin = inputs[i]
413         s += txin['tx_hash'].decode('hex')[::-1].encode('hex')   # prev hash
414         s += int_to_hex(txin['index'],4)                         # prev index
415
416         if for_sig is None:
417             pubkeysig = txin.get('pubkeysig')
418             if pubkeysig:
419                 pubkey, sig = pubkeysig[0]
420                 sig = sig + chr(1)                               # hashtype
421                 script  = op_push( len(sig))
422                 script += sig.encode('hex')
423                 script += op_push( len(pubkey))
424                 script += pubkey.encode('hex')
425             else:
426                 signatures = txin['signatures']
427                 pubkeys = txin['pubkeys']
428                 script = '00'                                    # op_0
429                 for sig in signatures:
430                     sig = sig + '01'
431                     script += op_push(len(sig)/2)
432                     script += sig
433
434                 redeem_script = multisig_script(pubkeys,2)
435                 script += op_push(len(redeem_script)/2)
436                 script += redeem_script
437
438         elif for_sig==i:
439             if txin.get('redeemScript'):
440                 script = txin['redeemScript']                    # p2sh uses the inner script
441             else:
442                 script = txin['raw_output_script']               # scriptsig
443         else:
444             script=''
445         s += var_int( len(script)/2 )                            # script length
446         s += script
447         s += "ffffffff"                                          # sequence
448
449     s += var_int( len(outputs) )                                 # number of outputs
450     for output in outputs:
451         addr, amount = output
452         s += int_to_hex( amount, 8)                              # amount
453         addrtype, hash_160 = bc_address_to_hash_160(addr)
454         if addrtype == 0:
455             script = '76a9'                                      # op_dup, op_hash_160
456             script += '14'                                       # push 0x14 bytes
457             script += hash_160.encode('hex')
458             script += '88ac'                                     # op_equalverify, op_checksig
459         elif addrtype == 5:
460             script = 'a9'                                        # op_hash_160
461             script += '14'                                       # push 0x14 bytes
462             script += hash_160.encode('hex')
463             script += '87'                                       # op_equal
464         else:
465             raise
466             
467         s += var_int( len(script)/2 )                           #  script length
468         s += script                                             #  script
469     s += int_to_hex(0,4)                                        #  lock time
470     if for_sig is not None and for_sig != -1:
471         s += int_to_hex(1, 4)                                   #  hash type
472     return s
473
474
475
476
477 def multisig_script(public_keys, num=None):
478     # supports only "2 of 2", and "2 of 3" transactions
479     n = len(public_keys)
480
481     if num is None:
482         num = n
483
484     assert num <= n and n <= 3 and n >= 2
485     
486     if num==2:
487         s = '52'
488     elif num == 3:
489         s = '53'
490     else:
491         raise
492     
493     for k in public_keys:
494         s += var_int(len(k)/2)
495         s += k
496     if n==2:
497         s += '52'
498     elif n==3:
499         s += '53'
500     else:
501         raise
502     s += 'ae'
503     return s
504
505
506
507 class Transaction:
508     
509     def __init__(self, raw):
510         self.raw = raw
511         self.deserialize()
512         self.inputs = self.d['inputs']
513         self.outputs = self.d['outputs']
514         self.outputs = map(lambda x: (x['address'],x['value']), self.outputs)
515         
516     @classmethod
517     def from_io(klass, inputs, outputs):
518         raw = raw_tx(inputs, outputs, for_sig = -1) # for_sig=-1 means do not sign
519         self = klass(raw)
520         self.inputs = inputs
521         self.outputs = outputs
522         return self
523
524     def __str__(self):
525         return self.raw
526
527     def for_sig(self,i):
528         return raw_tx(self.inputs, self.outputs, for_sig = i)
529
530     def hash(self):
531         return Hash(self.raw.decode('hex') )[::-1].encode('hex')
532
533     def sign(self, private_keys):
534         import deserialize
535
536         for i in range(len(self.inputs)):
537             txin = self.inputs[i]
538
539             if txin.get('redeemScript'):
540                 # 1 parse the redeem script
541                 num, redeem_pubkeys = deserialize.parse_redeemScript(txin.get('redeemScript'))
542                 self.inputs[i]["pubkeys"] = redeem_pubkeys
543
544                 # build list of public/private keys
545                 keypairs = {}
546                 for sec in private_keys.values():
547                     compressed = is_compressed(sec)
548                     pkey = regenerate_key(sec)
549                     pubkey = GetPubKey(pkey.pubkey, compressed)
550                     keypairs[ pubkey.encode('hex') ] = sec
551
552                 # list of signatures
553                 signatures = txin.get("signatures",[])
554                 
555                 # check if we have a key corresponding to the redeem script
556                 for pubkey, privkey in keypairs.items():
557                     if pubkey in redeem_pubkeys:
558                         # add signature
559                         compressed = is_compressed(sec)
560                         pkey = regenerate_key(sec)
561                         secexp = pkey.secret
562                         private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
563                         public_key = private_key.get_verifying_key()
564
565                         tx = raw_tx( self.inputs, self.outputs, for_sig = i )
566                         sig = private_key.sign_digest( Hash( tx.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
567                         assert public_key.verify_digest( sig, Hash( tx.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
568                         signatures.append( sig.encode('hex') )
569
570                 # for p2sh, pubkeysig is a tuple (may be incomplete)
571                 self.inputs[i]["signatures"] = signatures
572
573             else:
574                 sec = private_keys[txin['address']]
575                 compressed = is_compressed(sec)
576                 pkey = regenerate_key(sec)
577                 secexp = pkey.secret
578
579                 private_key = ecdsa.SigningKey.from_secret_exponent( secexp, curve = SECP256k1 )
580                 public_key = private_key.get_verifying_key()
581                 pkey = EC_KEY(secexp)
582                 pubkey = GetPubKey(pkey.pubkey, compressed)
583                 tx = raw_tx( self.inputs, self.outputs, for_sig = i )
584                 sig = private_key.sign_digest( Hash( tx.decode('hex') ), sigencode = ecdsa.util.sigencode_der )
585                 assert public_key.verify_digest( sig, Hash( tx.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
586
587                 self.inputs[i]["pubkeysig"] = [(pubkey, sig)]
588
589         self.raw = raw_tx( self.inputs, self.outputs )
590
591
592     def deserialize(self):
593         import deserialize
594         vds = deserialize.BCDataStream()
595         vds.write(self.raw.decode('hex'))
596         self.d = deserialize.parse_Transaction(vds)
597         return self.d
598     
599
600     def has_address(self, addr):
601         print self.inputs
602         print self.outputs
603         
604         found = False
605         for txin in self.inputs:
606             if addr == txin.get('address'): 
607                 found = True
608                 break
609         for txout in self.outputs:
610             if addr == txout[0]:
611                 found = True
612                 break
613         return found
614
615
616     def get_value(self, addresses, prevout_values):
617         # return the balance for that tx
618         is_send = False
619         is_pruned = False
620         v_in = v_out = v_out_mine = 0
621
622         for item in self.inputs:
623             addr = item.get('address')
624             if addr in addresses:
625                 is_send = True
626                 key = item['prevout_hash']  + ':%d'%item['prevout_n']
627                 value = prevout_values.get( key )
628                 if value is None:
629                     is_pruned = True
630                 else:
631                     v_in += value
632             else:
633                 is_pruned = True
634                     
635         for item in self.outputs:
636             addr, value = item
637             v_out += value
638             if addr in addresses:
639                 v_out_mine += value
640
641         if not is_pruned:
642             # all inputs are mine:
643             fee = v_out - v_in
644             v = v_out_mine - v_in
645         else:
646             # some inputs are mine:
647             fee = None
648             if is_send:
649                 v = v_out_mine - v_out
650             else:
651                 # no input is mine
652                 v = v_out_mine
653             
654         return is_send, v, fee
655
656
657
658 def test_bip32():
659     seed = "ff000000000000000000000000000000".decode('hex')
660     master_secret, master_chain, master_public_key, master_public_key_compressed = bip32_init(seed)
661         
662     print "secret key", master_secret.encode('hex')
663     print "chain code", master_chain.encode('hex')
664
665     key_id = hash_160(master_public_key_compressed)
666     print "keyid", key_id.encode('hex')
667     print "base58"
668     print "address", hash_160_to_bc_address(key_id)
669     print "secret key", SecretToASecret(master_secret, True)
670
671     print "-- m/0 --"
672     k0, c0 = CKD(master_secret, master_chain, 0)
673     print "secret", k0.encode('hex')
674     print "chain", c0.encode('hex')
675     print "secret key", SecretToASecret(k0, True)
676     
677     K0, K0_compressed, c0 = CKD_prime(master_public_key, master_chain, 0)
678     print "address", hash_160_to_bc_address(hash_160(K0_compressed))
679     
680     print "-- m/0/1 --"
681     K01, K01_compressed, c01 = CKD_prime(K0, c0, 1)
682     print "address", hash_160_to_bc_address(hash_160(K01_compressed))
683     
684     print "-- m/0/1/3 --"
685     K013, K013_compressed, c013 = CKD_prime(K01, c01, 3)
686     print "address", hash_160_to_bc_address(hash_160(K013_compressed))
687     
688     print "-- m/0/1/3/7 --"
689     K0137, K0137_compressed, c0137 = CKD_prime(K013, c013, 7)
690     print "address", hash_160_to_bc_address(hash_160(K0137_compressed))
691         
692
693 def test_p2sh():
694
695     print "2 of 2"
696     pubkeys = ["04e89a79651522201d756f14b1874ae49139cc984e5782afeca30ffe84e5e6b2cfadcfe9875c490c8a1a05a4debd715dd57471af8886ab5dfbb3959d97f087f77a",
697                "0455cf4a3ab68a011b18cb0a86aae2b8e9cad6c6355476de05247c57a9632d127084ac7630ad89893b43c486c5a9f7ec6158fb0feb708fa9255d5c4d44bc0858f8"]
698     s = multisig_script(pubkeys)
699     print "address", hash_160_to_bc_address(hash_160(s.decode('hex')), 5)
700
701
702     print "Gavin's tutorial: redeem p2sh:  http://blockchain.info/tx-index/30888901"
703     pubkey1 = "0491bba2510912a5bd37da1fb5b1673010e43d2c6d812c514e91bfa9f2eb129e1c183329db55bd868e209aac2fbc02cb33d98fe74bf23f0c235d6126b1d8334f86"
704     pubkey2 = "04865c40293a680cb9c020e7b1e106d8c1916d3cef99aa431a56d253e69256dac09ef122b1a986818a7cb624532f062c1d1f8722084861c5c3291ccffef4ec6874"
705     pubkey3 = "048d2455d2403e08708fc1f556002f1b6cd83f992d085097f9974ab08a28838f07896fbab08f39495e15fa6fad6edbfb1e754e35fa1c7844c41f322a1863d46213"
706     pubkeys = [pubkey1, pubkey2, pubkey3]
707
708     tx = Transaction.from_io(
709         [{'tx_hash':'3c9018e8d5615c306d72397f8f5eef44308c98fb576a88e030c25456b4f3a7ac', 'index':0,
710           'raw_output_script':'a914f815b036d9bbbce5e9f2a00abd1bf3dc91e9551087', 'redeemScript':multisig_script(pubkeys, 2)}],
711         [('1GtpSrGhRGY5kkrNz4RykoqRQoJuG2L6DS',1000000)])
712
713     tx_for_sig = tx.for_sig(0)
714     print "tx for sig", tx_for_sig
715
716     signature1 = "304502200187af928e9d155c4b1ac9c1c9118153239aba76774f775d7c1f9c3e106ff33c0221008822b0f658edec22274d0b6ae9de10ebf2da06b1bbdaaba4e50eb078f39e3d78"
717     signature2 = "30440220795f0f4f5941a77ae032ecb9e33753788d7eb5cb0c78d805575d6b00a1d9bfed02203e1f4ad9332d1416ae01e27038e945bc9db59c732728a383a6f1ed2fb99da7a4"
718
719     for pubkey in pubkeys:
720         import traceback, sys
721
722         public_key = ecdsa.VerifyingKey.from_string(pubkey[2:].decode('hex'), curve = SECP256k1)
723
724         try:
725             public_key.verify_digest( signature1.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
726             print True
727         except ecdsa.keys.BadSignatureError:
728             #traceback.print_exc(file=sys.stdout)
729             print False
730
731         try:
732             public_key.verify_digest( signature2.decode('hex'), Hash( tx_for_sig.decode('hex') ), sigdecode = ecdsa.util.sigdecode_der)
733             print True
734         except ecdsa.keys.BadSignatureError:
735             #traceback.print_exc(file=sys.stdout)
736             print False
737
738 if __name__ == '__main__':
739     #test_bip32()
740     test_p2sh()
741